125 research outputs found

    Seroprevalence of antibodies of Neospora spp. and Toxoplasma gondii in horses from southern Italy 

    Get PDF
    The consumption of horse meat has been epidemiologically linked to clinical toxoplasmosis in humans and neosporosis that may cause clinical illness in horses. Here we determined seroprevalence of antibodies against Toxoplasma gondii Nicolle et Manceaux, 1908 and species of Neospora Dubey, Carpenter, Speer, Topper et Uggla, 1988 in horses from Italy. Blood samples were collected from 643 apparently healthy horses from 60 farms of 51 municipalities in southern Italy. The presence of antibodies against T. gondii and Neospora spp. were detected by indirect fluorescence antibody test (IFAT); a titre = 50 was considered positive. The same sera were also tested for antibodies against Neospora spp. by a competitive-inhibition enzyme-linked immunosorbent assay (cELISA); samples with = 30% inhibition were considered positive. Antibodies against T. gondii and Neospora spp. were detected in 19 (3.0%) and 15 (2.3%) horses by IFAT, respectively, without statistical difference between gender, age and breeds (p-value = 0.05). Antibodies against species of Neospora were detected in 70 (10.9%) horses by cELISA with statistical difference in gender (6.0-18.5%, p-value = 0.05) and breeds (0-19.4%, p-value = 0.05). Although T. gondii infection rates were low, the risk of human infection should not be dismissed, particularly in Italy where consumption of raw or undercooked horse meat has a long tradition

    Seroprevalence and risk factors of infections with Neospora caninum and Toxoplasma gondii in hunting dogs from Campania region, southern Italy

    No full text
    Hunting dogs have probably a higher level of exposure to Neospora caninum Dubey, Carpenter, Speer, Topper et Uggla, 1988 and Toxoplasma gondii Nicolle et Manceaux, 1908 than other canine populations for their different lifestyle. The aim of our survey was to determine the seroprevalence of N. caninum and T. gondii in hunting dogs from southern Italy and assess risk factors related to these protozoan infections. Blood samples were collected from 398 hunting dogs (19 different breeds, aged from 5 month to 14 years). The sera were screened by indirect fluorescence antibody test; a titre ≥ 50 was considered positive. Antibodies to N. caninum and T. gondii were detected in 59 (15%) dogs with titres from 50 to 3 200 and in 94 (24%) dogs with titres from 50 to 1 600, respectively, with co-infection in 25 (6%) dogs. Statistical difference (p ≤ 0.05) was found only for infection with T. gondii between two age groups: ≥ 2-4 years (16%) and ≥ 4-7 years (33%); other observed characteristics were without statistical significance. Our results suggest that the hunting dogs could play an important role in the transmission cycle of N. caninum between wild animals and livestock. This is the first detection of antibodies to T. gondii in hunting dogs in Italy

    Cannabinoid Receptor Stimulation Impairs Mitochondrial Biogenesis in Mouse White Adipose Tissue, Muscle, and Liver: The Role of eNOS, p38 MAPK, and AMPK Pathways

    Get PDF
    OBJECTIVE - Cannabinoid type 1 (CB1) receptor is involved in whole-body and cellular energy metabolism. We asked whether CB1 receptor stimulation was able to decrease mitochondrial biogenesis in different metabolically active tissues of obese high-fat diet (HFD)-fed mice. RESEARCH DESIGN AND METHODS - The effects of selective CB1 agonist arachidonyl-2-chloroethanolamide (ACEA) and endocannabinoids anandamide and 2-arachidonoylglycerol on endothelial nitric oxide synthase (eNOS) expression were examined, as were mitochondrial DNA amount and mitochondrial biogenesis parameters in cultured mouse and human white adipocytes. These parameters were also investigated in white adipose tissue (WAT), muscle, and liver of mice chronically treated with ACEA. Moreover, p38 mitogen-activated protein kinase (MAPK) phosphorylation was investigated in WAT and isolated mature adipocytes from eNOS-/- and wild-type mice. eNOS, p38 MAPK, adenosine monophosphate-activated protein kinase (AMPK), and mitochondrial biogenesis were investigated in WAT, muscle, and liver of HFD mice chronically treated with ACEA. RESULTS - ACEA decreased mitochondrial biogenesis and eNOS expression, activated p38 MAPK, and reduced AMPK phosphorylation in white adipocytes. The ACEA effects on mitochondria were antagonized by nitric oxide donors and by p38 MAPK silencing. White adipocytes from eNOS-/- mice displayed higher p38 MAPK phosphorylation than wild-type animals under basal conditions, and ACEA was ineffective in cells lacking eNOS. Moreover, mitochondrial biogenesis was downregulated, while p38 MAPK phosphorylation was increased and AMPK phosphorylation was decreased in WAT, muscle, and liver of ACEA-treated mice on a HFD. CONCLUSIONS - CB1 receptor stimulation decreases mitochondrial biogenesis in white adipocytes, through eNOS downregulation and p38 MAPK activation, and impairs mitochondrial function in metabolically active tissues of dietary obese mic

    Oppositional COMT Val158Met effects on resting state functional connectivity in adolescents and adults

    No full text
    © 2014, The Author(s).Prefrontal dopamine levels are relatively increased in adolescence compared to adulthood. Genetic variation of COMT (COMT Val158Met) results in lower enzymatic activity and higher dopamine availability in Met carriers. Given the dramatic changes of synaptic dopamine during adolescence, it has been suggested that effects of COMT Val158Met genotypes might have oppositional effects in adolescents and adults. The present study aims to identify such oppositional COMT Val158Met effects in adolescents and adults in prefrontal brain networks at rest. Resting state functional connectivity data were collected from cross-sectional and multicenter study sites involving 106 healthy young adults (mean age 24 ± 2.6 years), gender matched to 106 randomly chosen 14-year-olds. We selected the anterior medial prefrontal cortex (amPFC) as seed due to its important role as nexus of the executive control and default mode network. We observed a significant age-dependent reversal of COMT Val158Met effects on resting state functional connectivity between amPFC and ventrolateral as well as dorsolateral prefrontal cortex, and parahippocampal gyrus. Val homozygous adults exhibited increased and adolescents decreased connectivity compared to Met homozygotes for all reported regions. Network analyses underscored the importance of the parahippocampal gyrus as mediator of observed effects. Results of this study demonstrate that adolescent and adult resting state networks are dose-dependently and diametrically affected by COMT genotypes following a hypothetical model of dopamine function that follows an inverted U-shaped curve. This study might provide cues for the understanding of disease onset or dopaminergic treatment mechanisms in major neuropsychiatric disorders such as schizophrenia and attention deficit hyperactivity disorder

    Age-Related Toxoplasma gondii Seroprevalence in Dutch Wild Boar Inconsistent with Lifelong Persistence of Antibodies

    Get PDF
    Toxoplasma gondii is an important zoonotic pathogen that is best known as a cause of abortion or abnormalities in the newborn after primary infection during pregnancy. Our aim was to determine the prevalence of T. gondii in wild boar to investigate the possible role of their meat in human infection and to get an indication of the environmental contamination with T. gondii. The presence of anti-T. gondii antibodies was determined by in-house ELISA in 509 wild boar shot in 2002/2003 and 464 wild boar shot in 2007. Most of the boar originated from the “Roerstreek” (n = 673) or the “Veluwe” (n = 241). A binormal mixture model was fitted to the log-transformed optical density values for wild boar up to 20 months old to estimate the optimal cut-off value (−0.685) and accompanying sensitivity (90.6%) and specificity (93.6%). The overall seroprevalence was estimated at 24.4% (95% CI: 21.1–27.7%). The prevalence did not show variation between sampling years or regions, indicating a stable and homogeneous infection pressure from the environment. The relation between age and seroprevalence was studied in two stages. Firstly, seroprevalence by age group was determined by fitting the binary mixture model to 200 animals per age category. The prevalence showed a steep increase until approximately 10 months of age but stabilized at approximately 35% thereafter. Secondly, we fitted the age-dependent seroprevalence data to several SIR-type models, with seropositives as infected (I) and seronegatives as either susceptible (S) or resistant (R). A model with a recovery rate (SIS) was superior to a model without a recovery rate (SI). This finding is not consistent with the traditional view of lifelong persistence of T. gondii infections. The high seroprevalence suggests that eating undercooked wild boar meat may pose a risk of infection with T. gondii

    Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells

    Get PDF
    Background: Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. Results: Here we identify Heterochromatin Protein 1β (HP1β) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1β is differentially localized and differentially associated with chromatin. Deletion of HP1β, but not HP1aα, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1β has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1β in ESCs. The minor fraction of HP1β that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. Conclusions: We demonstrate an unexpected duality in the role of HP1β: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1β function both depends on, and regulates, the pluripotent state

    Role of the Epigenetic Regulator HP1γ in the Control of Embryonic Stem Cell Properties

    Get PDF
    The unique properties of embryonic stem cells (ESC) rely on long-lasting self-renewal and their ability to switch in all adult cell type programs. Recent advances have shown that regulations at the chromatin level sustain both ESC properties along with transcription factors. We have focused our interest on the epigenetic modulator HP1γ (Heterochromatin Protein 1, isoform γ) that binds histones H3 methylated at lysine 9 (meH3K9) and is highly plastic in its distribution and association with the transcriptional regulation of specific genes during cell fate transitions. These characteristics of HP1γ make it a good candidate to sustain the ESC flexibility required for rapid program changes during differentiation. Using RNA interference, we describe the functional role of HP1γ in mouse ESC. The analysis of HP1γ deprived cells in proliferative and in various differentiating conditions was performed combining functional assays with molecular approaches (RT-qPCR, microarray). We show that HP1γ deprivation slows down the cell cycle of ESC and decreases their resistance to differentiating conditions, rendering the cells poised to differentiate. In addition, HP1γ depletion hampers the differentiation to the endoderm as compared with the differentiation to the neurectoderm or the mesoderm. Altogether, our results reveal the role of HP1γ in ESC self-renewal and in the balance between the pluripotent and the differentiation programs

    Widespread Expression of BORIS/CTCFL in Normal and Cancer Cells

    Get PDF
    BORIS (CTCFL) is the paralog of CTCF (CCCTC-binding factor; NM_006565), a ubiquitously expressed DNA-binding protein with diverse roles in gene expression and chromatin organisation. BORIS and CTCF have virtually identical zinc finger domains, yet display major differences in their respective C- and N-terminal regions. Unlike CTCF, BORIS expression has been reported only in the testis and certain malignancies, leading to its classification as a “cancer-testis” antigen. However, the expression pattern of BORIS is both a significant and unresolved question in the field of DNA binding proteins. Here, we identify BORIS in the cytoplasm and nucleus of a wide range of normal and cancer cells. We compare the localization of CTCF and BORIS in the nucleus and demonstrate enrichment of BORIS within the nucleolus, inside the nucleolin core structure and adjacent to fibrillarin in the dense fibrillar component. In contrast, CTCF is not enriched in the nucleolus. Live imaging of cells transiently transfected with GFP tagged BORIS confirmed the nucleolar accumulation of BORIS. While BORIS transcript levels are low compared to CTCF, its protein levels are readily detectable. These findings show that BORIS expression is more widespread than previously believed, and suggest a role for BORIS in nucleolar function

    Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2

    Get PDF
    BACKGROUND: The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA) is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET) uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2), a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. RESULTS: TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2). The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. CONCLUSION: The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function

    DNA Topoisomerase II Modulates Insulator Function in Drosophila

    Get PDF
    Insulators are DNA sequences thought to be important for the establishment and maintenance of cell-type specific nuclear architecture. In Drosophila there are several classes of insulators that appear to have unique roles in gene expression. The mechanisms involved in determining and regulating the specific roles of these insulator classes are not understood. Here we report that DNA Topoisomerase II modulates the activity of the Su(Hw) insulator. Downregulation of Topo II by RNAi or mutations in the Top2 gene result in disruption of Su(Hw) insulator function. This effect is mediated by the Mod(mdg4)2.2 protein, which is a unique component of the Su(Hw) insulator complex. Co-immunoprecipitation and yeast two-hybrid experiments show that Topo II and Mod(mdg4)2.2 proteins directly interact. In addition, mutations in Top2 cause a slight decrease of Mod(mdg4)2.2 transcript but have a dramatic effect on Mod(mdg4)2.2 protein levels. In the presence of proteasome inhibitors, normal levels of Mod(mdg4)2.2 protein and its binding to polytene chromosomes are restored. Thus, Topo II is required to prevent Mod(mdg4)2.2 degradation and, consequently, to stabilize Su(Hw) insulator-mediated chromatin organization
    corecore