1,727 research outputs found

    Seasonal oxygen, nitrogen and phosphorus benthic cycling along an impacted Baltic Sea estuary: regulation and spatial patterns

    Get PDF
    The regulatory roles of temperature, eutrophication and oxygen availability on benthic nitrogen (N) cycling and the stoichiometry of regenerated nitrogen and phosphorus (P) were explored along a Baltic Sea estuary affected by treated sewage discharge. Rates of sediment denitrification, anammox, dissimilatory nitrate reduction to ammonium (DNRA), nutrient exchange, oxygen (O-2) uptake and penetration were measured seasonally. Sediments not affected by the nutrient plume released by the sewage treatment plant (STP) showed a strong seasonality in rates of O-2 uptake and coupled nitrification-denitrification, with anammox never accounting for more than 20 % of the total dinitrogen (N-2) production. N cycling in sediments close to the STP was highly dependent on oxygen availability, which masked temperature-related effects. These sediments switched from low N loss and high ammonium (NH4 (+)) efflux under hypoxic conditions in the fall, to a major N loss system in the winter when the sediment surface was oxidized. In the fall DNRA outcompeted denitrification as the main nitrate (NO3 (-)) reduction pathway, resulting in N recycling and potential spreading of eutrophication. A comparison with historical records of nutrient discharge and denitrification indicated that the total N loss in the estuary has been tightly coupled to the total amount of nutrient discharge from the STP. Changes in dissolved inorganic nitrogen (DIN) released from the STP agreed well with variations in sedimentary N-2 removal. This indicates that denitrification and anammox efficiently counterbalance N loading in the estuary across the range of historical and present-day anthropogenic nutrient discharge. Overall low N/P ratios of the regenerated nutrient fluxes impose strong N limitation for the pelagic system and generate a high potential for nuisance cyanobacterial blooms

    Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves

    Get PDF
    The effects of red/far red (R/FR) ratios on leaf ascorbate (AA) and glutathione (GSH) accumulation were examined in common bean (Phaseolus vulgaris L.). Growth under low R/FR ratios resulted in a "shade" phenotype and much lower leaf AA and GSH contents than high (R/FR) ratios. Photosynthesis rates were unaffected by changes in the R/FR ratio but leaf respiration rates, pyridine nucleotide pools and antioxidant enzyme activities were decreased under the low R/FR regime. The GSH pool changed slowly in response to altered R/FR ratios but leaf ascorbate acclimated over a single photoperiod. We conclude that light quality signals, particularly R/FR ratios, are important regulators of antioxidant synthesis and accumulation. These acclimatory changes are an early response to changing light environment.Instituto de Fisiología Vegeta

    Purification and partial characterization of draculin, the anticoagulant factor present in the saliva of vampire bats (<i>Desmodus rotundus</i>)

    Get PDF
    From the saliva of the vampire bat Desmodus rotundus, we isolated an unknown anticoagulant protein which we have named draculin. Its molecular mass as determined by non-reduced SDS-PAGE is about 83 kDa. The reduced polypeptide shows a slower migration. HPLC in a molecular sieve matrix yields a single, symmetrical peak corresponding to 88.5 kDa. Isoelectric focusing shows an acidic protein with pI = 4.1–4.2. Aminoacid analysis is compatible with a single chain polypeptide of about 80 kDa. Cyanogen bromide cleavage yields a single 16-aminoacid peptide, corresponding to the amino-terminus of the native molecule. Draculin inhibits the activated form of coagulation factors IX and X. It does not act on thrombin, trypsin, chymotrypsin and does not express fibrinolytic activity. The inhibition is immediate and not readily reversible, with a stoichiometry of about two molecules of draculin per molecule of factor IXa or Xa. Surprisingly, the inhibitory activity against either factor is not affected by the presence of the other. Draculin binds quantitatively to either immobilised factor Xa or factor IXa. Our preliminary interpretation is that there are two forms of draculin that hardly differ in structure. Both bind to factor Xa and to factor IXa but one form inhibits factor Xa and the other inhibits factor IXa. When added to plasma, draculin increases the lag phase as well as the height of the peak of thrombin generation

    Inter-relationships between light and respiration in the control of ascorbic acid synthesis and accumulation in Arabidopsis thaliana leaves

    Get PDF
    The effects of growth irradiance and respiration on ascorbic acid (AA) synthesis and accumulation were studied in the leaves of wild-type and transformed Arabidopsis thaliana with modified amounts of the mitochondrial alternative oxidase (AOX) protein. Plants were grown under low (LL; 50 μmol photons m-2 s-1), intermediate (IL; 100 μmol photons m-2 s-1), or high (HL; 250 μmol photons m-2 s-1) light. Increasing growth irradiance progressively elevated leaf AA content and hence the values of dark-induced disappearance of leaf AA, which were 11, 55, and 89 nmol AA lost g-1 fresh weight h-1, from LL-, IL-, and HL-grown leaves, respectively. When HL leaves were supplied with L-galactone-1,4-lactone (L-GalL; the precursor of AA), they accumulated twice as much AA and had double the maximal L-galactone-1,4-lactone dehydrogenase (L-GalLDH) activities of LL leaves. Growth under HL enhanced dehydroascorbate reductase and monodehydroascorbate reductase activities. Leaf respiration rates were highest in the HL leaves, which also had higher amounts of cytochrome c and cytochrome c oxidase (CCO) activities, as well as enhanced capacity of the AOX and CCO electron transport pathways. Leaves of the AOX-overexpressing lines accumulated more AA than wild-type or antisense leaves, particularly at HL. Intact mitochondria from AOX-overexpressing lines had higher AA synthesis capacities than those from the wild-type or antisense lines even though they had similar L-GalLDH activities. AOX antisense lines had more cytochrome c protein than wild-type or AOX-overexpressing lines. It is concluded that regardless of limitations on L-GalL synthesis by regulation of early steps in the AA synthesis pathway, the regulation of L-GalLDH activity via the interaction of light and respiratory controls is a crucial determinant of the overall ability of leaves to produce and accumulate AA.Facultad de Ciencias Naturales y MuseoInstituto de Fisiología VegetalFacultad de Ciencias Agrarias y Forestale

    Problematising international placements as a site of intercultural learning

    Get PDF
    This paper theorises some of the learning outcomes of a three-year project concerning student learning in international social work placements in Malaysia. The problematic issue of promoting cultural and intercultural competence through such placements is examined, where overlapping hegemonies are discussed in terms of isomorphism of social work models, that of the nation state, together with those relating to professional values and knowledge, and the tyrannies of received ideas. A critical discussion of cultural competence as the rationale for international placements is discussed in terms of the development of the graduating social worker as a self-reflexive practitioner. The development of sustainable international partnerships able to support student placement and the issue of non-symmetrical reciprocation, typical of wide socio-economic differentials across global regions, is additionally discussed

    Control of Ascorbate Synthesis by Respiration and Its Implications for Stress Responses

    Get PDF
    We show for the first time that respiration can control ascorbate (AA) synthesis in plants. Evidence for this control is provided by (a) the localization of L-galactono-1,4-lactone dehydrogenase (GalLDH), the terminal enzyme in AA biosynthesis, with mitochondrial complex I, and its regulation by electron transport through this complex, (b) the absolute requirement of the enzyme for oxidized cytochrome c (cyt c(ox)) as substrate, and (c) the coordinated response of respiration and AA synthesis to stress induced by hormone treatment.Instituto de Fisiología VegetalFacultad de Ciencias Agrarias y Forestale

    Ascorbate content of wheat leaves is not determined by maximal L-galactono-1,4-lactone dehydrogenase (GalLDH) activity under drought stress

    Get PDF
    Although ascorbic acid (AA) is a high-abundance metabolite, relatively little is known about the factors controlling its accumulation in leaves. To address this issue, we examined the role of l-galactono-1,4-lactone dehydrogenase (GalLDH), the enzyme which catalyses the last step of this pathway, in the control of AA content under optimal and stress conditions. In a range of species, no clear relationship between AA content and leaf GalLDH protein and activity was found under optimal growth conditions. To explore the effect of drought stress on GalLDH activity and protein content, wheat (Triticum aestivum L.) was selected for detailed analysis, using two cultivars that differ in their constitutive AA level. In well-watered plants, the AA content of cv Buck Chambergo (BCH) was over twice that of cv Cooperativa Maipún (CM) but dehydroascorbic acid content was similar in both cv. In agreement with this, dehydroascorbate reductase and glutathione reductase activities were higher in cv BCH than in cv CM, indicating a higher capacity for AA regeneration. Neither leaf DHA content nor activities of AA regenerating enzymes were modified by drought. Although drought caused a substantial increase in GalLDH protein and activity in the low AA cv CM, this treatment had no effect on these parameters in cv BCH. Notably, leaf AA content was unaffected by drought in either cv. These results suggest that GalLDH protein and activity cannot be used as an indicator for changes in the capacity for ascorbate biosynthesis and that AA biosynthesis is constrained by other factors under stress. This can be explained by the importance of regeneration in maintaining AA levels and possibly also by redox regulation of GalLDH.Instituto de Fisiología Vegeta

    Grindelia globularifolia Griseb.

    Get PDF
    En las cercanías Cuesta de Argel, Sierra Grande de Córdoba (Achala)publishedVersio
    • …
    corecore