4 research outputs found

    The impact of type of dietary protein, animal versus vegetable, in modifying cardiometabolic risk factors: A position paper from the International Lipid Expert Panel (ILEP)

    Get PDF
    Proteins play a crucial role in metabolism, in maintaining fluid and acid-base balance and antibody synthesis. Dietary proteins are important nutrients and are classified into: 1) animal proteins (meat, fish, poultry, eggs and dairy), and, 2) plant proteins (legumes, nuts and soy). Dietary modification is one of the most important lifestyle changes that has been shown to significantly decrease the risk of cardiovascular (CV) disease (CVD) by attenuating related risk factors. The CVD burden is reduced by optimum diet through replacement of unprocessed meat with low saturated fat, animal proteins and plant proteins. In view of the available evidence, it has become acceptable to emphasize the role of optimum nutrition to maintain arterial and CV health. Such healthy diets are thought to increase satiety, facilitate weight loss, and improve CV risk. Different studies have compared the benefits of omnivorous and vegetarian diets. Animal protein related risk has been suggested to be greater with red or processed meat over and above poultry, fish and nuts, which carry a lower risk for CVD. In contrast, others have shown no association of red meat intake with CVD. The aim of this expert opinion recommendation was to elucidate the different impact of animal vs vegetable protein on modifying cardiometabolic risk factors. Many observational and interventional studies confirmed that increasing protein intake, especially plant-based proteins and certain animal-based proteins (poultry, fish, unprocessed red meat low in saturated fats and low-fat dairy products) have a positive effect in modifying cardiometabolic risk factors. Red meat intake correlates with increased CVD risk, mainly because of its non-protein ingredients (saturated fats). However, the way red meat is cooked and preserved matters. Thus, it is recommended to substitute red meat with poultry or fish in order to lower CVD risk. Specific amino acids have favourable results in modifying major risk factors for CVD, such as hypertension. Apart from meat, other animal-source proteins, like those found in dairy products (especially whey protein) are inversely correlated to hypertension, obesity and insulin resistance

    Impact of processing method on donated human breast milk microRNA content.

    No full text
    Pasteurization of donated human milk preserves it for storage and makes it safe for feeding, but at the expense of its composition, nutritional values and functions. Here, we aimed to investigate the impact of Holder Pasteurization (HoP) and High Pressure Processing (HPP) methods on miRNA in human milk and to evaluate impact of these changes on miRNA functions. Milk samples obtained from women in 50th day of lactation (n = 3) were subjected either to HoP, HPP or remained unpasteurized as a control. Subsequently, miRNA was isolated from whole material and exosomal fraction and sequenced with Illumina NextSeq 500. Sequencing data were processed, read counts were mapped to miRNA and analyzed both quantitatively with DESeq2 and functionally with DIANA mirPath v.3. While HPP caused statistically insignificant decrease in number of miRNA reads compared to unprocessed material, HoP led to 82-fold decrease in whole material (p = 0.0288) and 302-fold decrease in exosomes (p = 0.0021) not leaving enough reads for further analysis. Changes in composition of miRNA fraction before and after HPP indicated uneven stability of individual miRNAs under high pressure conditions, with miR-30d-5p identified as relatively stable and miR-29 family as sensitive to HPP. Interestingly, about 2/3 of unprocessed milk miRNA content consists of only 10 distinct miRNAs with miR-148a-3p at the top. Functional analysis of most abundant human milk miRNAs showed their involvement in signaling pathways, cell communication, proliferation and metabolism that are obviously important in rapidly growing infants. Functions of miRNAs which suffered the greatest depletion during HPP were similar to roles of the majority of unprocessed human milk's miRNA, which indicates that those functions may be weakened although not completely lost. Our findings indicate that HPP is less detrimental to human milk miRNAs than HoP and should be considered in further research on recommended processing procedures for human milk banks

    Interaction of human mannose-binding lectin (MBL) with Yersinia enterocolitica lipopolysaccharide

    No full text
    tThe lipopolysaccharide (LPS) is involved in the interaction between Gram-negative pathogenic bacteriaand host. Mannose-binding lectin (MBL), complement-activating soluble pattern-recognition receptortargets microbial glycoconjugates, including LPS. We studied its interactions with a set of Yersinia ente-rocolitica O:3 LPS mutants. The wild-type strain LPS consists of lipid A (LA) substituted with an inner coreoligosaccharide (IC) which in turn is substituted either with the O-specific polysaccharide (OPS) or theouter core hexasaccharide (OC), and sometimes also with the enterobacterial common antigen (ECA). TheLPS mutants produced truncated LPS, missing OPS, OC or both, or, in addition, different IC constituentsor ECA. MBL bound to LA-IC, LA-IC-OPS and LA-IC-ECA but not LA-IC-OC structures. Moreover, LA-IC sub-stitution with both OPS and ECA prevented the lectin binding. Sequential truncation of the IC heptosesdemonstrated that the MBL targets the IC heptose region. Furthermore, microbial growth temperatureinfluenced MBL binding; binding was stronger to bacteria grown at room temperature (22◦C) than to bac-teria grown at 37◦C. In conclusion, our results demonstrate that MBL can interact with Y. enterocoliticaLPS, however, the in vivo significance of that interaction remains to be elucidated
    corecore