534 research outputs found

    Open inventor and MasterSuite

    Get PDF

    The Strong Levinson Theorem for the Dirac Equation

    Full text link
    We consider the Dirac equation in one space dimension in the presence of a symmetric potential well. We connect the scattering phase shifts at E=+m and E=-m to the number of states that have left the positive energy continuum or joined the negative energy continuum respectively as the potential is turned on from zero.Comment: Submitted to Physical Review Letter

    Spin-polarized tunneling spectroscopy in tunnel junctions with half-metallic electrodes

    Full text link
    We have studied the magnetoresistance (TMR) of tunnel junctions with electrodes of La2/3Sr1/3MnO3 and we show how the variation of the conductance and TMR with the bias voltage can be exploited to obtain a precise information on the spin and energy dependence of the density of states. Our analysis leads to a quantitative description of the band structure of La2/3Sr1/3MnO3 and allows the determination of the gap delta between the Fermi level and the bottom of the t2g minority spin band, in good agreement with data from spin-polarized inverse photoemission experiments. This shows the potential of magnetic tunnel junctions with half-metallic electrodes for spin-resolved spectroscopic studies.Comment: To appear in Physical Review Letter

    Spatiotemporal Characterization of Supercontinuum Extending from the Visible to the Mid-Infrared in Multimode Graded-Index Optical Fiber

    Get PDF
    We experimentally demonstrate that pumping a graded-index multimode fiber with sub-ns pulses from a microchip Nd:YAG laser leads to spectrally flat supercontinuum generation with a uniform bell-shaped spatial beam profile extending from the visible to the mid-infrared at 2500\,nm. We study the development of the supercontinuum along the multimode fiber by the cut-back method, which permits us to analyze the competition between the Kerr-induced geometric parametric instability and stimulated Raman scattering. We also performed a spectrally resolved temporal analysis of the supercontinuum emission.Comment: 5 pages 7 figure

    Evolution of reference networks with aging

    Full text link
    We study the growth of a reference network with aging of sites defined in the following way. Each new site of the network is connected to some old site with probability proportional (i) to the connectivity of the old site as in the Barab\'{a}si-Albert's model and (ii) to τα\tau^{-\alpha}, where τ\tau is the age of the old site. We consider α\alpha of any sign although reasonable values are 0α0 \leq \alpha \leq \infty. We find both from simulation and analytically that the network shows scaling behavior only in the region α<1\alpha < 1. When α\alpha increases from -\infty to 0, the exponent γ\gamma of the distribution of connectivities (P(k)kγP(k) \propto k^{-\gamma} for large kk) grows from 2 to the value for the network without aging, i.e. to 3 for the Barab\'{a}si-Albert's model. The following increase of α\alpha to 1 makes γ\gamma to grow to \infty. For α>1\alpha>1 the distribution P(k)P(k) is exponentional, and the network has a chain structure.Comment: 4 pages revtex (twocolumn, psfig), 5 figure

    Convergence of finite volume scheme for degenerate parabolic problem with zero flux boundary condition

    No full text
    This note is devoted to the study of the finite volume methods used in the discretization of degenerate parabolic-hyperbolic equation with zero-flux boundary condition. The notion of an entropy-process solution, successfully used for the Dirichlet problem, is insufficient to obtain a uniqueness and convergence result because of a lack of regularity of solutions on the boundary. We infer the uniqueness of an entropy-process solution using the tool of the nonlinear semigroup theory by passing to the new abstract notion of integral-process solution. Then, we prove that numerical solution converges to the unique entropy solution as the mesh size tends to 0

    Random spread on the family of small-world networks

    Get PDF
    We present the analytical and numerical results of a random walk on the family of small-world graphs. The average access time shows a crossover from the regular to random behavior with increasing distance from the starting point of the random walk. We introduce an {\em independent step approximation}, which enables us to obtain analytic results for the average access time. We observe a scaling relation for the average access time in the degree of the nodes. The behavior of average access time as a function of pp, shows striking similarity with that of the {\em characteristic length} of the graph. This observation may have important applications in routing and switching in networks with large number of nodes.Comment: RevTeX4 file with 6 figure

    Structure of Growing Networks: Exact Solution of the Barabasi--Albert's Model

    Full text link
    We generalize the Barab\'{a}si--Albert's model of growing networks accounting for initial properties of sites and find exactly the distribution of connectivities of the network P(q)P(q) and the averaged connectivity qˉ(s,t)\bar{q}(s,t) of a site ss in the instant tt (one site is added per unit of time). At long times P(q)qγP(q) \sim q^{-\gamma} at qq \to \infty and qˉ(s,t)(s/t)β\bar{q}(s,t) \sim (s/t)^{-\beta} at s/t0s/t \to 0, where the exponent γ\gamma varies from 2 to \infty depending on the initial attractiveness of sites. We show that the relation β(γ1)=1\beta(\gamma-1)=1 between the exponents is universal.Comment: 4 pages revtex (twocolumn, psfig), 1 figur

    Ising model in small-world networks

    Full text link
    The Ising model in small-world networks generated from two- and three-dimensional regular lattices has been studied. Monte Carlo simulations were carried out to characterize the ferromagnetic transition appearing in these systems. In the thermodynamic limit, the phase transition has a mean-field character for any finite value of the rewiring probability p, which measures the disorder strength of a given network. For small values of p, both the transition temperature and critical energy change with p as a power law. In the limit p -> 0, the heat capacity at the transition temperature diverges logarithmically in two-dimensional (2D) networks and as a power law in 3D.Comment: 6 pages, 7 figure

    Small world effects in evolution

    Get PDF
    For asexual organisms point mutations correspond to local displacements in the genotypic space, while other genotypic rearrangements represent long-range jumps. We investigate the spreading properties of an initially homogeneous population in a flat fitness landscape, and the equilibrium properties on a smooth fitness landscape. We show that a small-world effect is present: even a small fraction of quenched long-range jumps makes the results indistinguishable from those obtained by assuming all mutations equiprobable. Moreover, we find that the equilibrium distribution is a Boltzmann one, in which the fitness plays the role of an energy, and mutations that of a temperature.Comment: 13 pages and 5 figures. New revised versio
    corecore