Abstract

We generalize the Barab\'{a}si--Albert's model of growing networks accounting for initial properties of sites and find exactly the distribution of connectivities of the network P(q)P(q) and the averaged connectivity qˉ(s,t)\bar{q}(s,t) of a site ss in the instant tt (one site is added per unit of time). At long times P(q)qγP(q) \sim q^{-\gamma} at qq \to \infty and qˉ(s,t)(s/t)β\bar{q}(s,t) \sim (s/t)^{-\beta} at s/t0s/t \to 0, where the exponent γ\gamma varies from 2 to \infty depending on the initial attractiveness of sites. We show that the relation β(γ1)=1\beta(\gamma-1)=1 between the exponents is universal.Comment: 4 pages revtex (twocolumn, psfig), 1 figur

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020