
Open Inventor™ and MasterSuite

Patrick Barthelemy G5G SA (a TGS company), Bordeaux, France

Robert Weideman TGS Inc. San Diego, USA

Abstract

Open Inventor is a powerful C++ class library for building 3D graphics
applications. Open Inventor was developed by Silicon Graphics Inc. for the
UNIX/X11/Motif environment. The UNIX version consists of a portable core
component and a window system (in this case X11 and Motif) specific component
named “SoXt”. Template Graphics Software Inc. (TGS) has licensed the Open
Inventor source and developed a version for Unix platforms and Microsoft
Windows NT / Windows 95 platforms.

Keywords: TGS Inc., G5G SA, Open Inventor, MasterSuite, VRML, GraphMaster,
3D DataMaster

1 Architecture

Open Inventor was designed to be portable and window system independent. It uses a
strategy similar to the one used in OpenGL (which Open Inventor normally uses as its
rendering engine). OpenGL is divided into a large core of system independent
functions and a small set of window (and operating system) specific functions. The
system specific functions generally have similar functionality but different parameters.
These OpenGL functions are identified by a unique prefix, for example:

UNIX X11 glX

Win32 (Windows NT/95) wgl

OS/2 pgl

Macintosh agl

This has been a successful strategy. Some modification of the program for each
platform is necessary, but in most cases the window system specific calls are used in a
small number of places. Of course there may be many other window system and user
interface changes that must be made to the program, for example converting a Motif
interface into the equivalent Win32 or MFC interface. These changes are independent
of the graphics library.

The corresponding prefixes for Open Inventor are:

UNIX X11 SoXt

Win32 (Windows NT/95) SoWin

CORE Metadata, citation and similar papers at core.ac.uk

Provided by CERN Document Server

https://core.ac.uk/display/25229145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The correspondence between Open Inventor components in the Win32 environment and
in the UNIX environment is illustrated in Figure 1.

 Open Inventor

Win32
 Controls

Motif
Xt

 OpenGL API WIN32 API Xlib API

 SoWin
 Components

 SoXt
 Components

 Microsoft Windows
 Environment

 UNIX / X11
 Environment

Classes

Figure 1: Open Inventor for Win32 and for UNIX

In porting an OpenGL program from UNIX you find that the Win32 “wgl” functions
have different names and different syntax but similar concepts. We used the same
strategy in designing the Open Inventor SoWin classes. SoWin contains the same classes
as SoXt and in most cases their methods differ only in the data types of the parameters.
This allows experienced UNIX Open Inventor programmers to benefit from their
knowledge of the SoXt classes. It also allows all Open Inventor programmers to benefit
from the extensive tutorial and example information in the The Inventor Mentor and
The Inventor Toolmaker. SoWin is fully described in a following section.

There is a very close correspondence between the UNIX SoXt classes and the Win32
SoWin classes. This allowed us to define a set of SoXt “aliases” for the SoWin classes
that facilitate porting Open Inventor programs from the UNIX X11 environment.
Using the SoXt aliases, simple Open Inventor programs can often be ported to the
Win32 environment with only minor changes. The SoXt aliases are described in their
own section.

A significant difference between the Win32 C++ environment and UNIX is that much of
the new C++ development under Win32 is being done using the Microsoft Foundation
Classes (MFC) and the MFC AppWizard. MFC is both a class library that “wraps” the
Win32 API and a powerful application framework based on the document/view
paradigm. MFC provides a standard implementation of services common to many
applications, such as printing, tool bars and status bars. The MFC AppWizard is a tool
that generates a skeleton MFC application that is ready to compile, link and execute.
The AppWizard can automatically add support for various features such as OLE, ODBC
(database access), and so on.

For programmers using MFC, Open Inventor for Win32 provides the IVF classes and
the IVF AppWizard. IVF is both a class library that “wraps” the SoWin API (similar to
the way MFC wraps the Win32 API) and an extension of the MFC application
framework specifically for 3D graphics applications. Using Open Inventor features,
IVF also extends MFC to provide a standard implementation of 3D graphics services

common to many applications, such as interactive viewers, object manipulators and
attribute editors. The IVF AppWizard is an extension of the MFC AppWizard that
generates a skeleton MFC application with 3D graphics enabled. The IVF AppWizard
can automatically add support for features such as interactive viewers, VRML
“anchors” and so on. IVF is described in its own section.

So there are actually three parts to the implementation of the window-system-specific
components of Open Inventor for Win32:

SoWin Win32 specific classes

SoXt Aliases for SoWin classes

IVF MFC extension classes

Why three parts instead of just integrating Open Inventor into MFC? In short, because it
provides the “best of both worlds”. IVF provides a good, clean extension to MFC
without having to expose every method of every Open Inventor component class.
Similar to the way MFC allows direct access to the Win32 API, the Open Inventor
component methods are accessible to applications that need them. At the same time the
one-to-one correspondence between SoWin and SoXt classes allows Open Inventor
programmers to carry over knowledge from one environment to the other and makes
resources such as The Inventor Mentor directly applicable to the Win32 environment.
The SoWin classes provide critical flexibility in two areas that will allow Open Inventor
to be more quickly adopted and have lasting value in this environment. First, the SoWin
classes can be used to build extension classes for application frameworks other than
MFC. Second, the SoWin classes can be used to add 3D graphics functionality to
existing applications, even in situations where development policy does not allow the
class inheritance tree to be modified (as would be required to add IVF support to an
MFC application).

2 SoXt Alias Classes

Here is a simple Open Inventor program from chapter 2 of The Inventor Mentor
(example 2-4). The only difference between this program and the UNIX/X11 version
shown in the Mentor is the addition of three lines (highlighted below). These lines use
the standard preprocessor symbol “WIN32,” which is defined in the Win32
environment, to change the name of function “main”. Most Win32 programs (the
exception is console applications) do not have a function named main. Instead the first
entry point in the program is named “WinMain” and has a very different set of
parameters. Applications using Open Inventor for Win32 are not required to have a
WinMain because the optional SoWin utility library provides one. Open Inventor’s
WinMain function performs some basic bookkeeping operations and then calls the
application’s “ivMain” function with the same parameters as the familiar UNIX
“main” function.

Example 1 “Hello Cone” Using the SoXt Alias Classes

#include <Inventor/Xt/SoXt.h>

#include <Inventor/Xt/viewers/SoXtExaminerViewer.h>

#include <Inventor/nodes/SoCone.h>

#include <Inventor/nodes/SoMaterial.h>

#include <Inventor/nodes/SoSeparator.h>

#if defined(WIN32)

#define main ivMain

#endif

void main(int, char **argv)

{

Widget myWindow = SoXt::init(argv[0]);

if (myWindow == NULL) exit(1);

SoSeparator *root = new SoSeparator;

root->ref();

SoMaterial *myMaterial = new SoMaterial;

myMaterial->diffuseColor.setValue(1.0, 0.0, 0.0);

root->addChild(myMaterial);

root->addChild(new SoCone);

SoXtExaminerViewer *myViewer =

new SoXtExaminerViewer(myWindow);

myViewer->setSceneGraph(root);

myViewer->setTitle("Examiner Viewer");

myViewer->show();

SoXt::show(myWindow);

SoXt::mainLoop();

}

Because the WIN32 symbol is not defined on UNIX systems, this program is completely
portable. It can be compiled, linked and executed with no additional changes in either a
Win32 or a UNIX environment. With one or two exceptions, all the example programs
from The Inventor Mentor and The Inventor Toolmaker were made portable with only
minor changes similar to the ones shown above. This is highly desirable because these
programs are, for the most part, intended to illustrate system independent features of
Open Inventor. Using the SoXt alias classes, the important information in the programs
is not obscured by platform differences.

The SoXt alias classes are valuable for more than just simple example programs.
Potentially any Open Inventor program that does not make explicit calls to Xlib, Xt or

Motif functions can be ported to Win32 with its SoXt calls intact. For example, the
Open Inventor demo program “slotcar” (included with the Open Inventor for Win32
SDK) is a moderately complex program that was ported using the SoXt aliases. Even
when there is Motif code to be converted, knowing that SoXt calls map directly to
SoWin calls (and generally have the same behavior) means that the SoXt calls could be
left in the code, which would reduce the number of “ifdefs” in the final code. We do
not recommend this approach for production code but it can make porting easier for
some projects.

Strictly speaking, there are no SoXt classes or data types in Open Inventor for Win32.
However all the SoXt header files are provided. These header files redefine the SoXt
classes as the corresponding SoWin classes and the necessary X11 (and Xt and Motif)
data types as the corresponding Win32 data types. So, for example, class
SoXtExaminerViewer is redefined as class SoWinExaminerViewer. There is an SoWin
class that corresponds to each of the SoXt classes. The Win32 SoXt (SoWin) methods
generally perform the same, or very similar, actions as their UNIX counterparts.

In order to redefine the X11 data types, we take advantage of the general similarity
between the X Window System and the Microsoft Window System. Both refer to
windows using opaque handles, both provide a window hierarchy in which child
windows are clipped against their parent window, and so on. The X11 type Window
corresponds well to the Win32 type HWND (which is the mapping Open Inventor uses).
Win32 does not have a concept directly analogous to the Xt “widget”. However, in Xt
there is always exactly one window that corresponds to a particular widget, so Open
Inventor for Win32 also maps the Xt type Widget to the Win32 type HWND. Thus the
SoXt::init method returns a “Widget” which is actually a window handle which can
then be passed to the SoXtExaminerViewer constructor as its parent window.

The SoXt::show method has the same effect as its UNIX equivalent in this situation. It
uses the Win32 function ShowWindow to make the application’s top level window
visible. The SoXt::mainLoop method also has essentially the same behavior as its UNIX
equivalent. It uses the SoXt::nextEvent and SoXt::dispatchEvent methods, which are in
turn implemented using (mostly) the Win32 GetMessage and DispatchMessage
functions. More details are given in the SoWin section. The Win32 MSG data type is
roughly equivalent to the X11 Xevent data type. Most of the same basic user interface
events exist in both window systems, for example keypress, mouse button and mouse
motion events.

3 VRML and extensibility

IVF provides a convenient layer for implementing Win32 specific extensions to the core
Open Inventor capabilities without having to modify Open Inventor itself (and thereby
introduce portability problems). A good example is the standard VRML feature
support defined for IVF. VRML stands for Virtual Reality Modelling Language. It is a
standard file format, based on Open Inventor, for using 3D geometry and scenes on the
World Wide Web. Open Inventor itself can read and write VRML geometry files (in
addition to Open Inventor geometry files) and supports a superset of the nodes defined
in VRML. However reading VRML nodes into the scene graph and actually providing
browser-like behavior is two different things.

For example, the WWWAnchor node provides a way to associate a hyper-link with some
geometry in the scene. Fields in the WWWAnchor node allow both a URL and some

descriptive text to be specified for the link. The WWWAnchor class allows the
application to specify a callback function to be called when the Anchor’s geometry is
selected. So far, so good. But typically an application using WWWAnchor also wants to
have some feedback provided to the user when the cursor is over the associated
geometry, in other words when a click (or other action) would select the Anchor. IVF
provides this behavior. By default the URL string is displayed in the mainframe
window’s status bar when the cursor is over the geometry. An application can override
this behavior in the usual MFC way, by overriding a virtual function.

As was mentioned earlier, IVF implements support for VRML “hints”, including
ViewPoints. ViewPoints, for example, are specified as a set of predefined cameras under
a Switch node named “Cameras”. IVF puts the viewpoints (cameras) into a convenient
list from which the application can set them. The IVF AppWizard can optionally create
a ViewPoints menu for the application. If this menu exists, IVF will automatically add
the viewpoints from the scene to the menu.

4 IVF AppWizard

The MFC AppWizard is a standard part of the Microsoft Visual C++ product. It is a
powerful (and often used) tool that generates a skeleton MFC application that can
include support for OLE, printing and many other features. The resulting application is
ready to compile, link and execute. The IVF AppWizard is a “Custom AppWizard” for
the Visual C++ 4.0 environment that extends the standard MFC AppWizard. In addition
to the standard AppWizard dialog boxes, it displays the dialog box shown below. The
IVF AppWizard generates an MFC application that includes support for interactive 3D
graphics using IVF and the Open Inventor class library. Notice that the optional
features include support for VRML nodes.

5 General Issues

The core Open Inventor classes (nodes, actions, sensors, etc) are almost entirely platform
independent. However there are some cases where platform differences must be
addressed, either by establishing a convention or by enhancing the classes. The most
significant cases are:

5 . 1 Fonts

In the UNIX/X11 environment, Open Inventor’s text classes can use any PostScript
(Adobe Type1) font. A selection of PostScript fonts is available on every major
UNIX/X11 platform. The default font in this environment is “Utopia”, which is
distributed with the Open Inventor SDK and assumed to be always available.

In the Win32 environment, PostScript fonts could be used, but they are not as
commonly available because they are not distributed with the windowing system.
Instead Open Inventor’s text classes use Microsoft standard TrueType fonts. A basic set
of these fonts is available on every Windows NT or Windows 95 platform, and many
different fonts are available from third parties. The default font in this environment is
“Times New Roman”, which is distributed with the Windows NT and Windows 95
operating systems.

5 . 2 SoFont Node

In the UNIX/X11 environment, to use an alternate style of a PostScript font, for example
bold or italic, you actually specify a different font. Usually the names of the variants
are fairly obvious, for example “Utopia-Bold” and “Utopia-Italic”, but the point is
that the UNIX/X11 environment uses the name of the font to encode style information
in addition to the actual font name.

In the Win32 environment, each TrueType font (typically) supports some number of
“styles”. The four basic styles are “Regular”, “Bold”, “Italic” and “Bold Italic”.
To use an alternate style of a TrueType font, you actually specify the same font but with
a different style. Therefore, the Win32 environment needs more than just the name of
the font to determine the desired appearance.

Open Inventor for Win32 uses the following convention for a string specifying a font
(specifically for the name field of the SoFont node):

“Font Name : Style”

For example, a bold serif font could be specified as: “Times New Roman : Bold”.
Note that font names under Win32 can (and often do) contain spaces. Space characters
immediately preceding or following the colon character are ignored (treated as white
space). The TrueType fonts used for the various values of the family field of the
SoFontStyle node are:

SERIF Times New Roman

SANS Arial

TYPEWRITER Courier New

5 . 3 File Portability

Open Inventor “ascii” format files are inherently portable because they are simply
“text” files. The only issue is the minor difference in how a “line” is terminated. In
the UNIX environment, each line of a text file is terminated by a new line character, also
known as the line feed character. In the Win32 environment, many programs still use
the DOS convention that each line of a text file is terminated by a carriage return plus a
line feed. Open Inventor for Win32 reads both kinds of text files, but always writes files
with UNIX style line termination (line feed only). Programs to do the (simple)
conversion between line termination styles are widely available.

Open Inventor “binary” files face the usual portability issues of byte order and floating
point format. Open Inventor for Win32 follows these conventions in reading and
writing binary files:

Byte order Same as SGI (“big endian”)

Floating point format IEEE floating point

Numeric values 32 bits

Necessary format conversions are done automatically when reading or writing a file.
Because Open Inventor uses the same conventions on every platform, Open Inventor
binary data files are network transparent. The same file can be read successfully on any
platform without performing any explicit conversion. Because the Open Inventor
binary format is also a very compact representation, the portability conventions make it
ideal for transferring and storing 3D graphics data.

5 . 4 Extended Input and Output

The standard Open Inventor classes, SoInput and SoOutput, can read and write Inventor
data from a buffer in memory or a file represented by a stdio file pointer (“FILE *”).
Both of these mechanisms are also available in the Win32 environment, but there are
several additional requirements.

In order to allow derivation of new classes from SoInput and SoOutput, these classes
were modified to make (essentially) all of their methods virtual. This change does not
affect Open Inventor applications.

5 . 5 Offscreen Rendering

The Open Inventor SoOffscreenRenderer class is a very powerful tool for generating
bitmap images of an Open Inventor scene. The bitmap image can be written out to a
file or reused within the application as an image or texture map. Arguably,
SoOffscreenRenderer belongs in the Open Inventor component library because it needs
to use window system specific calls to obtain a bitmap (pixmap in X11 terms) that
OpenGL can render into. However the system specific details are hidden from the
application.

The standard SoOffscreenRenderer can write files in SGI’s “.rgb” format or in
Encapsulated PostScript format. Open Inventor for Win32 adds a new method to this
class which writes a file in the standard Win32 “.bmp” format:

SbBool writeToBMP(FILE *fp) const;

This is much more useful in the Win32 environment because many programs can
import and display “.bmp” files, including Microsoft’s Word, Excel and Powerpoint.
The standard SoOffscreenRenderer also provides a method (getBuffer) that returns a
pointer to the bitmap image in OpenGL (glReadPixels) format. Open Inventor for
Win32 extends this concept with a new method that returns a pointer to the Win32
memory device context (DC) that contains the image:

HDC getDC() const;

The memory DC is roughly equivalent to the glXPixmap used in the UNIX/X11
implementation. Because of the generality of the Win32 graphics model, a Win32
program can “blt” the bitmap image directly from the memory DC into a display
window context, a Windows Enhanced Metafile (“.emf”) context, or a printer device
context. A printer device context hides the details of the actual printer, allowing Open
Inventor for Win32 programs to support hardcopy onto any device (supported by
Windows) with no additional effort. The getDC method is also used in MFC programs
to implement support for the “print preview” feature.

6 MasterSuite

The complete object oriented product line for all your cross-platform and cross-
network graphics developments Powered by Open Inventor. This part is designed to
help you understand what are DialogMaster, PlotMaster, GraphMaster and 3D
DataMaster class libraries, the four companions of Open Inventor parts of the Master
Suite by TGS-G5G.

Master Suite class libraries implement extensions to the Open Inventor development
environment. These extensions give you access to all new functionality that will speed
up your development by including 2D drawing and charting capabilities, a set of input
devices that makes design of user interface much more powerful and still cross platform,
a set of classes to develop viewers for your scientific data. This is not only for your
screen but also for your favorite printer on which you are able to output your graphics
using vector quality rather than just getting a hardcopy image through Open Inventor.

Because the Master Suite product line is powered by Open Inventor (and so OpenGL),
you are going to develop fully cross-platform graphics applications and you will be
able to deliver your graphics through the network using the de facto standard VRML.
Using the 3Space family products your Master Suite visualization may be included
using ActiveX control in a Word document, an Excel report, a PowerPoint presentation
or in e-mail, to share with others real 3D information that can be manipulated and not
only a flat and static 2D representation of your results. You can also distribute your 3D
graphics to the Web by including them in your Web page, then people are able to
visualize and manipulate your results.

If you develop your application using Master Suite you have still access to all Open
Inventor capabilities, you can mix Master Suite and Open Inventor nodes, you can use
all of Open Inventor rendering facilities such as camera, lighting, texturing, and fog to
render your visualization. Master Suite node’s fields can be connected to any Open
Inventor engines to animate them for instance or sensors to change any of their values.
The same way you are able to store your Open Inventor database in a metafile, you can
store and retrieve your visualization to or from a metafile that can be a iv format or
VRML format.

6 . 1 DialogMaster

The first component of the Master Suite products line, DialogMaster extends the Xt
component of Open Inventor and provide you with an easy and powerful way to design
cross-platform user interfaces for your Master Suite application. This component
library is available for both UNIX and windows platforms. DialogMaster defines a
dialog area that can include sliders, choice button or string input areas. Each of the
devices can be triggered and then a callback function may be started for each of them.
All Master Suite (or Open Inventor) parameters may be changed using these devices.
Some powerful « widgets » are also provided within DialogMaster to very easily
customize GraphMaster and 3DDataMaster nodes such as axis editors, contouring
editors, or cross section editors. GraphMaster monitors provide you with a powerful
built-in user interface to customize your vector PostScript, HPGL or CGM outputs for
all your Open Inventor or Master Suite applications.

6 . 2 PlotMaster

The second component of the Master Suite product line, PlotMaster extends Open
Inventor actions to allow your application to output a vectorized format of your
database. At this time Open Inventor can only make a postcript bitmap output of your
database. This action stores the image of your visualization using PostScript image
output, which is like doing a hardcopy of your screen. With PlotMaster you are able to
create vectorized output using CGM, HPGL or PostScript format. With CGM format you
can the plug your date in a wide range of other software, using HPGL or PostScript
format you can now produce high quality paper output. PlotMaster allows you to fully
define configuration parameters by setting the action fields to fit your printer
configuration.

6 . 3 GraphMaster

GraphMaster gives you access to a new set of 2D and 3D shape nodes :

2D nodes : Open Inventor only provides 3D shape nodes. With this first set of extension,
you are able to design very easily and efficiently your 2D graphic applications. This
includes simple 2D shapes, such as rectangles, circles or arrows, 2D charting nodes to
draw a range of different 2D axis (linear logarithmic, angular, time...), curves or
markers field, statistical nodes using pie or bar chart representation, error areas, etc.

3D drawing : The previous classes are extended in 3D such as 3D circles, 3D pie or bar
charts, 3D curves or 3D axis. These nodes give you access to a wide range of new 3D
functionality:

cartesian axis 2D/3D

linear

logarithmic

generalized

angular axis 2D/3D

polar axis

linear

logarithmic

time axis 2D/3D

multi-axis system 2D/3D

XY axis

rectangle of XY axis

XYZ axis

rectangle of XY axis
with Z elevation

curve

linear

stair

smooth (cubic-spline)

double stairs

histogram

raise points

filling curve to a threshold

2D/3D text

vectorized fonts

PostScript fonts

legends

items legend

values legend

statistic representations

single histogram

multiple histogram

2D pie chart

3D pie chart

high-low-close

error curve

error points field

points field bars

2D3D generalized

parallelogram

circle, circle arc

arrow

labels field

valued markers field

6 . 4 3D DataMaster

3D DataMaster allows you to « mine » your data. The best way to understand, explain
or distribute your scientific results is certainly to visualize them. 3D DataMaster can

deal with whatever type of meshes you have, 2D or 3D meshes, Cartesian, spherical,
cylindrical, triangle, hexahedral, structured or indexed and let you build from them
vectors field, 2D or 3D contouring, cross section and of course a wide variety of legends
to explain your visualization.

6.4.1 : Types of meshes :

2D "grid" mesh : cartesian, parallel cartesian, polar.

2D indexed mesh (unstructured): mesh of triangles, mesh of quadrangles, and mesh of
any type of polygon. Each element of the mesh is
defined by its nodes indices.

3D "grid" mesh : cartesian, parallel cartesian, cylindrical,spherical.

3D indexed mesh (unstructured): mesh of tetrahedrons, mesh of hexahedrons, and mesh
of pentahedrons, pyramids, hexahedrons or
tetrahedrons. Each element of the mesh is defined by its
nodes indices.

6.4.2 : 2D mesh representations :

limit : representation of the mesh limits

lines : representation of each edge of the mesh

filled : fill each element of the mesh

contouring : representation of contouring lines

side : 2D-1/2 representation of the mesh limits, by using altitude values

vector : representation of 2D vectors field

streamline : representation of 2D streamlines

6.4.3 : 3D mesh representations :

skin : representation of the mesh skin

cross-section : representation of scalar data on a cross-section of the mesh (cut-plane)

level surface : 3D level surface of scalar data on the mesh.

cross-contour intersection of a cross-section and the mesh skin

skeleton : set of X, Y and Z cross-contours which form a wireframe skeleton of the
mesh

vector : representation of 3D vectors field

streamline : representation of 3D streamlines

voxel : volumic representation

6.4.4 : Coloring type attribute of 2D-3D mesh representation

It defines the method used to color the edges or facets of the representation:

inherited : each elements of the representation are drawn with the same color

average: the color used to draw an element depend of the average of its nodes values.

mapping: data mapping

contouring : each element of the representation is divided into small elements according the
contouring values

7 Contact TGS Inc. or G5G SA

Template Graphics Software, Inc.

9920 Pacific Heights Blvd,

Suite 200

San Diego, CA 92121 - USA

Phone : 619 457 5359

Fax :619 452 2547

Email : info@tgs.com

WWW : http://www.tgs.com/

G5G SA, a TGS company

European Headquarters :

PA Kennedy I - BP 227

33708 Mérignac Cedex - FRANCE

Phone : +33 (0) 5 56 13 37 77

Fax : +33 (0) 5 56 13 02 10

Email : info@g5g.fr

WWW : http://www.tgs.com/

