59 research outputs found

    Accuracy of Guided Surgery and Real-Time Navigation in Temporomandibular Joint Replacement Surgery

    Get PDF
    Background: Sophisticated guided surgery has not been implemented into total joint replacement-surgery (TJR) of the temporomandibular joint (TMJ) so far. Design and in-house manufacturing of a new advanced drilling guide with vector and length control for a typical TJR fossa component are described in this in vitro study, and its accuracy/utilization was evaluated and compared with those of intraoperative real-time navigation and already available standard drilling guides. Methods: Skull base segmentations of five CT-datasets from different patients were used to design drilling guides with vector and length control according to virtual surgical planning (VSP) for the TJR of the TMJ. Stereolithographic models of the skull bases were printed three times for each case. Three groups were formed to compare our newly designed advanced drilling guide with a standard drilling guide and drill-tracking by real-time navigation. The deviation of screw head position, screw length and vector in the lateral skull base have been evaluated (n = 72). Results: There was no difference in the screw head position between all three groups. The deviation of vector and length was significantly lower with the use of the advanced drilling guide compared with standard guide and navigation. However, no benefit in terms of accuracy on the lateral skull base by the use of real-time navigation could be observed. Conclusion: Since guided surgery is standard in implant dentistry and other CMF reconstructions, this new approach can be introduced into clinical practice soon, in order to increase accuracy and patient safety

    Continuous Multidisciplinary Care for Patients With Orofacial Clefts—Should the Follow-up Interval Depend on the Cleft Entity?

    Get PDF
    Objective: The multidisciplinary follow-up of patients with cleft lip with or without palate (CL/P) is organized differently in specialized centers worldwide. The aim of this study was to evaluate the different treatment needs of patients with different manifestations of CL/P and to potentially adapt the frequency and timing of checkup examinations accordingly. Design:We retrospectively analyzed the data of all patients attending the CL/P consultation hour at a tertiary care center between June 2005 and August 2020 (n=1126). We defined 3 groups of cleft entities: (1) isolated clefts of lip or lip and alveolus (CL/A), (2) isolated clefts of the hard and/or soft palate, and (3) complete clefts of lip, alveolus and palate (CLP). Timing and type of therapy recommendations given by the specialists of different disciplines were analyzed for statistical differences. Results: Patients with CLP made up the largest group (n=537), followed by patients with cleft of the soft palate (n=371) and CL ±A (n=218). There were significant differences between the groups with regard to type and frequency of treatment recommendations. A therapy was recommended in a high proportion of examinations in all groups at all ages. Conclusion: Although there are differences between cleft entities, the treatment need of patients with orofacial clefts is generally high during the growth period. Patients with CL/A showed a similarly high treatment demand and should be monitored closely. A close follow-up for patients with diagnosis of CL/P is crucial and measures should be taken to increase participation in followup appointments

    Clinical Follow-Up in Orofacial Clefts—Why Multidisciplinary Care Is the Key

    Get PDF
    (1) Background: Although most clinicians involved in the treatment of cleft patients agree upon the major importance of interdisciplinary cooperation and many protocols and concepts have been discussed in the literature, there is little evidence of the relevance of continuous interdisciplinary care. We aimed to objectify the type and number of therapeutic decisions resulting from an annual multidisciplinary follow-up. (2) Methods: We retrospectively analyzed the data of all 1126 patients followed up in the weekly consultation hours for cleft patients at university clinics in Leipzig for the years 2005–2020. We assessed the clinical data of every patient and specifically evaluated the treatment decisions taken at different points in time by the participating experts of different specialties. (3) Results: In total, 3470 consultations were included in the evaluation, and in 70% of those, a therapeutic recommendation was given. Each specialty showed certain time frames with intense treatment demand, which partially overlapped. Nearly all therapy recommendations were statistically attached to a certain age (p < 0.001). (4) Conclusions: There is an exceptionally high need for the interdisciplinary assessment of patients with cleft formation. Some developmental phases are of particular importance with regard to regular follow-up and initiation of different treatment protocols. The therapy and checkup of cleft patients should be concentrated in specialized centers

    Culturing of Melanocytes from the Equine Hair Follicle Outer Root Sheath

    Get PDF
    Hair follicles harbor a heterogeneous regenerative cell pool and represent a putative low-to-non-invasively available source of stem cells. We previously reported a technology for culturing human melanocytes from the hair follicle outer root sheath (ORS) for autologous pigmentation of tissue engineered skin equivalents. This study translated the ORS technology to horses. We de-veloped a culture of equine melanocytes from the ORS (eMORS) from equine forelock hair follicles cultured by means of an analogue human hair follicle-based in vitro methodology. The procedure was adjusted to equine physiology by addition of equine serum to the culture medium. The hair follicles were isolated by macerating forelock skin rests, enzymatically digested and subjected to air-medium-interface cultivation method. The procedure resulted in differentiated equine melanocytes, which exhibited typical morphology, presence of melanosomes, expression of cytoskeleton proteins vimentin, α-SMA, Sox2, S100ß and tyrosinase as well as tyrosinase activity followed by production of melanin. According to all assessed parameters, eMORS could be ranked as partially melanotic melanocytes. The results of the study offer an experimental base for further insight into hair follicle biology in equine and for comparative studies of hair follicles across different species

    The Middle Part of the Plucked Hair Follicle Outer Root Sheath Is Identified as an Area Rich in Lineage-Specific Stem Cell Markers

    Get PDF
    Hair follicle outer root sheath (ORS) is a putative source of stem cells with therapeutic capacity. ORS contains several multipotent stem cell populations, primarily in the distal compartment of the bulge region. However, the bulge is routinely obtained using invasive isolation methods, which require human scalp tissue ex vivo. Non-invasive sampling has been standardized by means of the plucking procedure, enabling to reproducibly obtain the mid-ORS part. The mid-ORS shows potential for giving rise to multiple stem cell populations in vitro. To demonstrate the phenotypic features of distal, middle, and proximal ORS parts, gene and protein expression profiles were studied in physically separated portions. The mid-part of the ORS showed a comparable or higher NGFR, nestin/NES, CD34, CD73, CD44, CD133, CK5, PAX3, MITF, and PMEL expression on both protein and gene levels, when compared to the distal ORS part. Distinct subpopulations of cells exhibiting small and round morphology were characterized with flow cytometry as simultaneously expressing CD73/CD271, CD49f/CD105, nestin, and not CK10. Potentially, these distinct subpopulations can give rise to cultured neuroectodermal and mesenchymal stem cell populations in vitro. In conclusion, the mid part of the ORS holds the potential for yielding multiple stem cells, in particular mesenchymal stem cells

    Validity of the 3D VECTRA photogrammetric surface imaging system for cranio-maxillofacial anthropometric measurements

    Get PDF
    Purpose: The use of three-dimensional (3D) photography for anthropometric measurements is of increasing interest, especially in the cranio-maxillofacial field. Before standard implementation, accurate determination of the precision and accuracy of each system is mandatory. Methods: A mannequin head was labelled with 52 landmarks, and 28 three-dimensional images were taken using a commercially available five-pod 3D photosystem (3D VECTRA; Canfield, Fairfield, NJ) in different head positions. Distances between the landmarks were measured manually using a conventional calliper and compared with the digitally calculated distances acquired from labelling by two independent observers. The experimental set-up accounted for clinical circumstances by varying the positioning (vertical, horizontal, sagittal) of the phantom. Results: In the entire calliper measurement data set (n = 410), a significant difference (p = 0.02) between the directly measured and corresponding virtually calculated distances was found. The mean aberration between both modalities covering all data was 7.96mm. No differences (p = 0.94) between the two groups were found using a cut-off of 10% (leaving n = 369 distances) due to considerable errors in direct measurements and the necessary manual data translation. The mean diversity of both measurement modalities after cut-off was 1.33mm (maximum, 6.70mm). Inter-observer analysis of all 1,326 distances showed no difference (p = 0.99; maximal difference, 0.58mm) in the digital measurements. Conclusion: The precision and accuracy of this five-pod 3D photosystem suggests its suitability for clinical applications, particularly anthropometric studies. Three-hundred-and-sixty degree surface-contour mapping of the craniofacial region within milliseconds is particularly useful in paediatric patients. Proper patient positioning is essential for high-quality imaging

    A novel pilot animal model for bone augmentation using osseous shell technique for preclinical in vivo studies

    No full text
    Abstract Objectives Bone grafting is commonly used to reconstruct skeletal defects in the craniofacial region. Several bone augmentation models have been developed to evaluate bone formation using novel bone substitute materials. The aim of this study was to evaluate a surgical animal model for establishing a three‐dimensional (3D) grafting environment in the animal's mandibular ramus for bone augmentation using the osseous shell technique, as in humans. Materials and Methods Osteological survey of New Zealand white (NZW) rabbit skull (Oryctolagus cuniculus): Initial osteological and imaging surveys were performed on a postmortem skull for a feasibility assessment of the surgical procedure. Postmortem pilot surgery and cone beam computed tomography imaging: a 3D osseous defect was created in the mandibular ramus through a submandibular incision. The osseous shell plates were stabilized with osteosynthesis fixation screws, and defects were filled with particular bone grafting material. In vivo surgical procedure: surgeries were conducted in four 8‐week‐old NZW rabbits utilizing two osseous shell materials: xenogeneic human cortical plates and autogenous rabbit cortical plates. The created 3D defects were filled using xenograft and allograft bone grafting materials. The healed defects were evaluated for bone formation after 12 weeks using histological and cone beam computed tomography imaging analysis. Results Clinical analysis 12 weeks after surgery revealed the stability of the 3D grafted bone augmentation defects using the osseous shell technique. Imaging and histological analyses confirmed the effectiveness of this model in assessing bone formation. Conclusions The proposed animal model is a promising model with the potential to study various bone grafting materials for augmentation in the mandibular ramus using the osseous shell technique without compromising the health of the animal. The filled defects could be analyzed for osteogenesis, quantification of bone formation, and healing potential using histomorphometric analysis, in addition to 3D morphologic evaluation using radiation imaging
    • 

    corecore