100 research outputs found

    Studying the Drug Delivery Kinetics of Nanosponges Using a MIP-Based Thermal Sensing Platform

    Get PDF
    The implementation of Molecularly Imprinted Polymers (MIPs) into sensing systems has been demonstrated abundantly over the past few decades. In this article, a novel application for an MIP-based thermal sensing platform is introduced by using the sensor to characterize the drug release kinetics of a nanoporous silver-organic framework. This Ag nanoporous matrix was loaded with acetylsalicylic acid (aspirin) which was used as a model drug compound in this study. The drug elution properties were studied by placing the nanoporous matrix in phosphate buffered saline solution for two days and measuring the drug concentration at regular time intervals. To this extent, an acrylamide-based MIP was synthesized that was able to detect aspirin in a specific and selective manner. Rebinding of the template to the MIP was analyzed using a thermal sensor platform. The results illustrate that the addition of aspirin into the sensing chamber leads to a concentration-dependent increase in the phase shift of a thermal wave that propagates through the MIP-coated sensor chip. After constructing a dose-response curve, this system was used to study the drug release kinetics of the nanoporous matrix, clearly demonstrating that the metalorganic framework releases the drug steadily over the course of the first hour, after which the concentration reaches a plateau. These findings were further confirmed by UV–Visible spectroscopy, illustrating a similar time-dependent release in the same concentration range, which demonstrates that the MIP-based platform can indeed be used as a low-cost straightforward tool to assess the efficacy of drug delivery systems in a lab environmen

    Substrate displacement colorimetry for the detection of diarylethylamines

    Get PDF
    In this work, a novel detection assay for the new psychoactive substance (NPS) 2-methoxiphenidine (2-MXP) and other diarylethylamines is introduced. The assay is based on the competitive displacement of dye molecules from molecularly imprinted polymers (MIPs) by the target molecule. The assay was fully characterized by studying the affinity of the MIP for six common dyes, expressed as the binding factor (BF). The results of this study indicate that the mathematical relationship between the BF of a dye and the imprinting factor (IF) for the target could be used for the prediction of the efficacy of the displacement assay. Dye-loaded MIP particles where incubated with the target, two adulterants and two legal pharmacological compounds. The target has a higher affinity for the MIP than the dye and displaces it out of the nanocavities of the receptor leading to a colour change in the filtrate that can be observed with the naked eye. Incubation of the MIP particles with the adulterants and legal medicines did not result in any observable change in absorbance. The robust, fast and low-cost nature of the assay, combined with its tailorable selectivity and generic nature, illustrate its potential as a pre-screening tool for the identification of narcotic substances in unidentified powders. Keywords: Molecularly imprinted polymer, displacement assay, colorimetry, new psychoactive substance identificatio

    Single-Shot Detection of Neurotransmitters in Whole-Blood Samples by Means of the Heat-Transfer Method in Combination with Synthetic Receptors.

    Get PDF
    Serotonin is an important neurotransmitter that plays a major role in the pathogenesis of a variety of conditions, including psychiatric disorders. The detection of serotonin typically relies on high-performance liquid chromatography (HPLC), an expensive technique that requires sophisticated equipment and trained personnel, and is not suitable for point-of-care applications. In this contribution, we introduce a novel sensor platform that can measure spiked neurotransmitter concentrations in whole blood samples in a fast and low-cost manner by combining synthetic receptors with a thermal readout technique-the heat-transfer method. In addition, the design of a miniaturized version of the sensing platform is presented that aims to bridge the gap between measurements in a laboratory setting and point-of-care measurements. This fully automated and integrated, user-friendly design features a capillary pumping unit that is compatible with point-of-care sampling techniques such as a blood lancet device (sample volume-between 50 µL and 300 µL). Sample pre-treatment is limited to the addition of an anti-coagulant. With this fully integrated setup, it is possible to successfully discriminate serotonin from a competitor neurotransmitter (histamine) in whole blood samples. This is the first demonstration of a point-of-care ready device based on synthetic receptors for the screening of neurotransmitters in complex matrices, illustrating the sensor's potential application in clinical research and diagnosis of e.g., early stage depression

    Dipstick sensor based on molecularly imprinted polymer-coated screen-printed electrodes for the single-shot detection of glucose in urine samples—from fundamental study toward point-of-care application

    Get PDF
    Glucose biosensors play an extremely important role in health care systems worldwide. Therefore, the field continues to attract significant attention leading to the development of innovative technologies. Due to their characteristics, Molecularly Imprinted Polymers (MIPs) represent a promising alternative to commercial enzymatic sensors. In this work, a low-cost, flexible MIP-based platform for glucose sensing by integrating MIP particles directly into screen-printed electrodes (SPEs) is realized. The sensor design allows the detection of glucose via two different transducer principles, the so-called “heat-transfer method” (HTM) and electrochemical impedance spectroscopy (EIS). The sensitivity and selectivity of the sensor are demonstrated by comparing the responses obtained toward three different saccharides. Furthermore, the application potential of the MIP-SPE sensor is demonstrated by analyzing the response in urine samples, showing a linear range of 14.38–330 µm with HTM and 1.37–330 µm with EIS. To bring the sensor closer to a real life application, a handheld dipstick sensor is developed, allowing the single-shot detection of glucose in urine using EIS. This study illustrates that the simplicity of the dipstick readout coupled with the straightforward manufacturing process opens up the possibility for mass production, making this platform a very attractive alternative to commercial glucose sensors

    Label-free protein detection based on the heat-transfer method-a case study with the peanut allergen Ara h 1 and aptamer-based synthetic receptors

    Get PDF
    © 2015 American Chemical Society. Aptamers are an emerging class of molecules that, because of the development of the systematic evolution of ligands by exponential enrichment (SELEX) process, can recognize virtually every target ranging from ions, to proteins, and even whole cells. Although there are many techniques capable of detecting template molecules with aptamer-based systems with high specificity and selectivity, they lack the possibility of integrating them into a compact and portable biosensor setup. Therefore, we will present the heat-transfer method (HTM) as an interesting alternative because this offers detection in a fast and low-cost manner and has the possibility of performing experiments with a fully integrated device. This concept has been demonstrated for a variety of applications including DNA mutation analysis and screening of cancer cells. To the best our knowledge, this is the first report on HTM-based detection of proteins, in this case specifically with aptamer-type receptors. For proof-of-principle purposes, measurements will be performed with the peanut allergen Ara h 1 and results indicate detection limits in the lower nanomolar regime in buffer liquid. As a first proof-of-application, spiked Ara h 1 solutions will be studied in a food matrix of dissolved peanut butter. Reference experiments with the quartz-crystal microbalance will allow for an estimate of the areal density of aptamer molecules on the sensor-chip surface

    The role and uses of antibodies in COVID-19 infections: a living review

    Get PDF
    Coronavirus disease 2019 has generated a rapidly evolving field of research, with the global scientific community striving for solutions to the current pandemic. Characterizing humoral responses towards SARS-CoV-2, as well as closely related strains, will help determine whether antibodies are central to infection control, and aid the design of therapeutics and vaccine candidates. This review outlines the major aspects of SARS-CoV-2-specific antibody research to date, with a focus on the various prophylactic and therapeutic uses of antibodies to alleviate disease in addition to the potential of cross-reactive therapies and the implications of long-term immunity

    T cell phenotypes in COVID-19 - a living review

    Get PDF
    COVID-19 is characterized by profound lymphopenia in the peripheral blood, and the remaining T cells display altered phenotypes, characterized by a spectrum of activation and exhaustion. However, antigen-specific T cell responses are emerging as a crucial mechanism for both clearance of the virus and as the most likely route to long-lasting immune memory that would protect against re-infection. Therefore, T cell responses are also of considerable interest in vaccine development. Furthermore, persistent alterations in T cell subset composition and function post-infection have important implications for patients’ long-term immune function. In this review, we examine T cell phenotypes, including those of innate T cells, in both peripheral blood and lungs, and consider how key markers of activation and exhaustion correlate with, and may be able to predict, disease severity. We focus on SARS-CoV-2-specific T cells to elucidate markers that may indicate formation of antigen-specific T cell memory. We also examine peripheral T cell phenotypes in recovery and the likelihood of long-lasting immune disruption. Finally, we discuss T cell phenotypes in the lung as important drivers of both virus clearance and tissue damage. As our knowledge of the adaptive immune response to COVID-19 rapidly evolves, it has become clear that while some areas of the T cell response have been investigated in some detail, others, such as the T cell response in children remain largely unexplored. Therefore, this review will also highlight areas where T cell phenotypes require urgent characterisation

    METHODS FOR DETECTING BACTERIA USING POLYMER MATERIALS

    No full text
    A method for characterizing bacteria includes passing a liquid containing an analyte comprising a first bacteria and a second bacteria over and in contact with a polymer material on a substrate. The polymer material is formulated to bind to the first bacteria, and the first bacteria binds to the polymer material with a higher affinity than the second bacteria. A heat transfer property of the polymer material varies based on an amount of the analyte bound thereto. The method further includes binding a portion of the first bacteria and the second bacteria of the analyte to the polymer material, removing at least a portion of the second bacteria from the polymer material, detecting a temperature of the substrate, and calculating a concentration of the first bacteria in the liquid based at least in part on the temperature of the substrate

    THERMOCOUPLES COMPRISING A POLYMER FOR DETECTING ANALYTES AND RELATED METHODS

    No full text
    A device for detecting an analyte includes a thermocouple having an assay polymer over a surface of the thermocouple. The assay polymer is formulated to bind to the analyte, and a heat transfer property of the assay polymer varies responsive to an amount of the analyte bound thereto. A method of forming a sensor includes providing an assay polymer over a thermocouple. A method for detecting an analyte includes passing a liquid containing an analyte adjacent a thermocouple having an assay polymer over a surface thereof, binding an analyte to the assay polymer, detecting a temperature of the thermocouple, and calculating a concentration of the analyte in the liquid based at least in part on the heat transfer property of the assay polymer
    • …
    corecore