
This is a n  Op e n  Acces s  doc u m e n t  dow nloa d e d  fro m  ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry: h t t p s://o rc a .c a r diff.ac.uk/id/e p rin t/14 3 4 4 0/

This  is t h e  a u t ho r’s ve r sion  of a  wo rk  t h a t  w as  s u b mi t t e d  to  / a c c e p t e d  for

p u blica tion.

Cit a tion  for  final p u blish e d  ve r sion:

Scou rfield,  D. Oliver, Re e d,  So p hie  G., Qu a s t el,  M ax, Alde r so n,  Jennifer, Ba r t,

Valen tin a  M.  T., Teijei r a  Cr e s po,  Alicia,  Jones,  Ru t h,  P rin g,  Ellie,  Rich t er, Felix

Cle m e n s,  Ahe r n,  David  J., Almut t a qi, H a n n a h,  Alonzi, Do minic S., Alrub ayyi,

Aljaw h a r a h,  Alsaleh,  Gh a d a,  Ba r t ,  Valen tin a  M. T., Ba tc h elor, Vicky, Bayliss,

Reb e cc a ,  Be r t hold,  Doro t h é e  L., Bezb r a dic a,  Jelen a  S, Bha r uc h q,  Teh min a,

Bor r m a n n,  H ele n e,  Bors a,  M a ri a n a ,  Bor s t ,  Rowie,  Bru n,  Julian e,  Bu r n ell,

S t e p h a nie  E. A., Ca pi t a ni, Lore nzo, Cavou nidis,  Athe n a,  Ch a p m a n,  Lucy,

Ch a uve a u,  Anne,  Cifue n t e s,  Lilian a ,  Codd,  Amy S us a n,  Co m p e er, E wou d

Ber n a r d u s,  Cove n ey, Cla riss a,  C ross,  Amy, Da nielli, S a r a ,  Davie s,  Luke  C,

Den d ro u,  Calliop e  A., Dimon t e ,  S a n d r a ,  Pe t e r  Dur ai r aj,  Ru b a n  Rex, Dus tin,

Lynn  B., Dyer, Arth ur, Fi elding,  Ce ri, Fisc h er, Fa bian,  Gallimor e,  Awen,

Gallow ay, S a r a h,  Ga m m a g e,  Anís, Ge a-M allo rq uí, Es t er, Godkin,  Andr ew,

H a n n a,  S t e p h a nie  Jea n,  H e u b e r g er, Co r n elia,  H ulin-Cur tis,  S a r a h ,  Iss a,  Fadi,

Jones,  E m m a,  Jones ,  Ru t h,  Lad ell, Kris tin,  Lau d er, S a r a h  N., Liddia r d,  Kate,

Ligoxygakis, Pe t ro s,  Lu, Fan gfa n g,  M a cLac hlan,  Bruc e,  M aleki-Toyse rk a ni,

S h ayd a,  M a n n,  Elizab e t h  H., M a rze d a,  Ann a  M., Jam e s  M a t t h e w s,  Regin ald,

M az e t,  Julie  M., Milicic, Anit a ,  Mitch ell, E m m a,  Moon,  Ow e n,  N g uye n,  Van

Dien,  O' H a nlon, Mi ri a m,  Eléono r e  Paville t ,  Cla r a ,  Pe p p a,  Dimit r a ,  Pi r e s,  Ana,

P ring,  Ele a nor, Qu a s t el,  M ax, Re e d,  Sop hie,  Re h winkel, Jan,  Rich mo n d,

Nia m h,  Rich t er, Felix Cle m e n s,  Robinson,  Alice  J. B., Rod rigu e s,  Pa t rícia  R. S.,

S a b b e r w al, P r a g a ti,  S a mi, Arvind,  Pe r e s ,  Ra p h a el  S a n c h e s ,  S a t t e n t a u ,

Qu e n tin,  Sc ho nfeldova,  Ba r bo r a ,  Scou rfield,  David  Oliver, S elvaku m ar, Tha rini

A., S h e p h e r d,  F r eya  R., S ho r t e n,  C a ri a d,  Si mon,  Ann a  Kat h a rin a,  S mit h,

Adria n  L., C r e s po, Alicia  Teijei r a ,  Tellier, Mich a el, Thor n to n,  E mily, U hl, Lion  F.

K., van  Grinsven,  E rink e,  Wann,  Angus  K. T., Willia ms,  Rich a r d ,  Wilson,  Jos ep h

D., Zhou,  Dingxi, Zhu,  Ziha n  a n d  Bur n ell, S t e p h a nie  E.  A. 2 0 2 1.  The  role  a n d

u s e s  of a n tibodie s  in COVID-1 9  infec tions:  a  living  r eview. Oxford  Op e n

Im m u nology 2  (1) , iqa b 0 0 3.  1 0.10 9 3/oxfim m/iqa b 0 0 3  file  

P u blish e r s  p a g e:  h t t p://dx.doi.o rg/10.10 9 3/oxfim m/iqa b 0 0 3

< h t t p://dx.doi.o rg/10.10 9 3/oxfim m/iqa b 0 0 3 >

Ple a s e  no t e:  

Ch a n g e s  m a d e  a s  a  r e s ul t  of p u blishing  p roc e s s e s  s uc h  a s  copy-e di ting,

for m a t ting  a n d  p a g e  n u m b e r s  m ay no t  b e  r eflec t e d  in t his  ve r sion.  For  t h e

d efini tive  ve r sion  of t his  p u blica tion,  ple a s e  r ef e r  to  t h e  p u blish e d  sou rc e.  You



a r e  a dvise d  to  cons ul t  t h e  p u blish e r’s ve r sion  if you  wish  to  ci t e  t his  p a p er.

This ve r sion  is b ein g  m a d e  av ailable  in  a cco r d a n c e  wit h  p u blish e r  policie s.

S e e  

h t t p://o rc a .cf.ac.uk/policies.h t ml for  u s a g e  policies.  Copyrigh t  a n d  m o r al  r i gh t s

for  p u blica tions  m a d e  available  in ORCA a r e  r e t ain e d  by t h e  copyrig h t

hold e r s .



REVIEW ARTICLE

The role and uses of antibodies in COVID-19 infections:

a living review

D. Oliver Scourfield1,*,‡, Sophie G. Reed1, Max Quastel2, Jennifer Alderson3,

Valentina M. T. Bart1, Alicia Teijeira Crespo4, Ruth Jones5, Ellie Pring1,

Felix Clemens Richter 3, The Oxford-Cardiff COVID-19 Literature

Consortium– and Stephanie E. A. Burnell 1,*,‡

1Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK, 2Nuffield

Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK, 3Kennedy Institute of Rheumatology,

NDORMS, University of Oxford, Oxford, OX3 FTY, UK, 4Division of Cancer and Genetics, School of Medicine,

Cardiff University, Cardiff, CF14 4XN UK, 5Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ,

UK

*Correspondence address. Stephanie E. A. Burnell, Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14

4XN, UK. Tel: 02920687060, E-mail: BurnellS@Cardiff.ac.uk and ScourfieldDO@Cardiff.ac.uk

‡These authors contributed equally to this work.

Extensive author list of The Oxford-Cardiff COVID-19 Literature Consortium is given in Appendix 1.

ABSTRACT

Coronavirus disease 2019 has generated a rapidly evolving field of research, with the global scientific community striving

for solutions to the current pandemic. Characterizing humoral responses towards SARS-CoV-2, as well as closely related

strains, will help determine whether antibodies are central to infection control, and aid the design of therapeutics and vac-

cine candidates. This review outlines the major aspects of SARS-CoV-2-specific antibody research to date, with a focus on

the various prophylactic and therapeutic uses of antibodies to alleviate disease in addition to the potential of cross-reactive

therapies and the implications of long-term immunity.

Key words: antibodies; COVID-19; SARS-CoV-2; convalescent plasma, nanobodies; vaccines; long-term immunity.

INTRODUCTION

Humoral immunity is a vital aspect of the immune system

highly implicated in infection control. Severe acute respiratory

syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious vi-

rus that is responsible for the current worldwide coronavirus

disease 2019 (COVID-19) pandemic. Understanding the immune

response to this virus is paramount to limit disease burden in

the population, and to discover new therapeutic options. One

such response is that of antibodies; the immunoglobulins se-

creted by B-cells following antigen recognition. Antibodies have

a multitude of effector functions and can coordinate the
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responses of other immune cells, including T cells and macro-

phages, to eliminate pathogens. Studying the antibody response

to SARS-CoV-2 will aid in vaccine design and the understanding

of long-term immunity prospects. Additionally, antibodies that

bind and neutralize the SARS-CoV-2 virus have the potential to

be used as therapies for patients in the various forms of conva-

lescent plasma, monoclonal antibodies and nanobodies, all of

which are discussed within this review.

ANTIBODY RESPONSES TO SARS-COV-2 IN
DIFFERENT PATIENT POPULATIONS

Immunoglobulins IgM, IgA and IgG are key components of the

antibody response towards SARS-CoV-2 and differ in titre and

duration of response, as with other viral infections (Figure 1) [4].

Table 1 summarizes the SARS-CoV-2 antibody literature to date.

This includes seroconversion; how long it takes antibodies to be

detected in the serum following infection, response kinetics;

how long it takes antibodies to achieve their peak titre, and the

prediction of response duration.

IgG levels were shown to peak earlier in asymptomatic and

mild cases compared to severe cases [�20 vs. �35 days post

symptom onset (d.p.s.o)] and most asymptomatic patients,

many of whom were children, had low or undetectable IgM

levels, leading to speculation that high and persistent IgM may

result in more severe symptoms [19, 21, 25–27]. Interestingly,

many publications have shown significant correlations of

Box 2: Why do antibodies in SARS-CoV-2 infection matter?

COVID-19 has rapidly changed the World, from countless deaths and long-term health problems in survivors, to creating a social

and economic burden. Research on COVID-19 is being produced quickly, so it is crucial that we view this critically to distinguish

robust data. From this baseline, we are then able to produce successful therapies as soon as possible to help fight this pandemic.

Looking at previous coronavirus strains is necessary to gain useful insights into this new and novel virus. There are similari-

ties between SARS-CoV-2 and former strains we have faced, which give us invaluable knowledge in treating patients and lim-

iting global disease burden. What we learn from COVID-19 may also be applied to future epidemic or pandemic strains.

Using antibodies taken from patients that have recovered from COVID-19 infection and giving them to those that are strug-

gling to fight off the infection has the potential to save lives and bridge the gap while doctors and scientists are learning

more about how to fight the virus and produce other treatments and vaccines.

Box 1: What is the consensus on antibodies in SARS-CoV-2 infection?

When infected with COVID-19, patients produce antibodies to fight off the infection. These antibodies are known as immuno-

globulins; IgM, IgA and IgG, and are key players in the response to COVID-19. Each has a unique role and therefore takes dif-

ferent lengths of time to be detected in the blood, to reach the maximum quantity and diminish from the system. As this is

still a new disease, further work is needed to determine how long these antibody responses last in the body. Most COVID-19

patients that do not display any symptoms have low levels of IgM, while levels of IgA and IgG antibodies are higher in more

severe, symptomatic patients. However, more in-depth study is needed to see if these antibody responses are important in

controlling infection and how they co-ordinate with other immune responses to COVID-19.

Patients with strong immune responses to COVID-19 have high levels of neutralizing antibodies, which successfully control

the infection. Once recovered, plasma can be taken from these patients and be administered to those who are currently se-

verely infected. This is known as CP treatment. Other treatment options, which include mAbs and nanobodies, are more fo-

cused therapies, having developed from the most potent antibodies. Approval of two potent mAb therapies signifies the im-

portance of antibodies in overcoming infection. However, these are most effective at preventing severe disease, so research

to identify treatments to benefit those severely infected is still needed. However, these are most effective at preventing pro-

gression to severe disease, so research to identify treatments to benefit those severely infected is still needed. Work is also

being carried out to investigate previous coronavirus infections to see what we can learn from them. It is possible that anti-

bodies made against these other strains may help protect people during this pandemic.

It is currently unknown whether people who have recovered from COVID-19 are protected against a future SARS-CoV-2 infec-

tion as reinfection has been reported in several people worldwide. This has implications for vaccine design as regular boos-

ters may be required if the immune response declines. Key components to creating a long-lasting immunity to the virus will

become clearer once further research has been conducted.
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Figure 1: Changes in antibody concentration in response to viral infection.

Following exposure to the virus and the initial incubation period of around 5

days, the infection takes hold. During the infection period, patients may develop

symptoms as the first virus-specific antibodies are produced and the immune

system is activated. IgM and IgA are produced initially, followed by IgG, which

increases more slowly, but remains in the blood for a longer period. During

the recovery and convalescent phases of infection, the viral RNA reduces to

undetectable levels. IgA levels can persist, particularly at the mucous

membranes [1–3], it is currently unclear how long the IgG titres last.
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higher antibody titres in both older patients and those with

more severe disease [7, 13, 17, 19, 28–30]. Relative levels of IgA

and IgG have been reported to be significantly higher in severe

patients in addition to a significant correlation between IgA lev-

els and APACHE-II score in critically ill patients [16, 23]. A study

investigating the specificity and functionality of antibody

responses in children found that SARS-CoV-2 positive children

had low levels of IgM, IgA and IgG when compared to severe

COVID-19 adults and demonstrated that children predomi-

nantly generated an anti-S IgG response compared to the

broader antibody response generated by adults [31]. It has been

suggested that the reduced symptoms demonstrated by chil-

dren could be due to the reduced expression of the viral receptor

in children or that children generate a more robust innate im-

mune response [32, 33].

In addition to age, biological sex is also a potential factor in

COVID-19 disease severity. Several countries have reported

higher hospital admissions and mortality rates in males, with a

case fatality rate 1.7 times higher for men than for women [34].

The production of IgG appears to be higher in females in the

early stages of infection, possibly preventing the progression to

advanced disease and decreasing the mortality rate [35, 36].

Patients that succumb to SARS-CoV-2 infection were unable to

generate a functional IgG response, coordinate Fc receptor-

binding and produce innate immune effector binding [37].

Further to this, patients with severe COVID-19, particularly

males, have been shown to generate IgG1 antibodies with sig-

nificantly reduced Fc fucosylation, in addition to increased IgG3

antibodies when compared to patients with mild symptoms

and children, indicating that severe COVID-19 resulted from the

production of pro-inflammatory IgG antibodies [38].

Coordinated responses between B cells, CD4þ and CD8þ T

cells are necessary to control and clear infection, without a

functional B-cell response, virus-specific memory T cells cannot

provide complete protection [39]. Neutralizing antibody (nAb)

responses and B cell memory decline over time and depend on

CD4þ T cell help, leaving the role of long-term protection to the

memory T cells [40, 41]. This, therefore, indicates that the im-

mune system as a whole must be analysed, in addition to the

individual components, to understand why some people are

asymptomatic while others succumb to the disease.

THE USE OF ANTIBODIES AS THERAPY FOR
COVID-19

There are various strategies to treat SARS-CoV-2 infection with

antibodies, as summarized in Figure 2. Plasma extracted from re-

covered COVID-19 patients is known as convalescent plasma (CP).

CP contains antibodies of various diversity (polyclonal) and affini-

ties to SARS-CoV-2 and was greatly employed during the early

phases of the pandemic. More recently, monoclonal antibodies

(mAbs) and nanobodies/sybodies have been developed. By

isolating memory B cells from recovered patients and immunized

animals or screening of antibody mRNA using phage display,

highly selective candidates with high-neutralization capacity

have been identified. Neutralizing responses to SARS-CoV-2 target

the receptor-binding domain (RBD) of the spike (S) glycoprotein,

which is required to interact with the target receptor angiotensin-

converting enzyme 2 (ACE2) on host cells [42–48]. Steric hindrance

of the RBD–ACE2 interaction by antibodies will block viral entry

and prevent infection. It should be noted that other neutralizing

epitopes, distant from the RBD, exist but are less studied [43–50].

CONVALESCENT PLASMA

CP has been used to successfully reduce mortality in a variety of

viral epidemics, including influenza, SARS and Middle East

Respiratory Syndrome (MERS) [51, 52]. During the current

COVID-19 pandemic, several studies have investigated CP trans-

fusions with high nAb titres as a treatment option (see

Figure 2A). Plasma is harvested from donors with total anti-

spike IgG titres of >1:320 using plasmapheresis, this can then be

transfused into an ABO-compatible patient [53]. Table 2 sum-

marizes studies investigating the use of CP in COVID-19

patients.

An early meta-analysis of CP treatment for COVID-19 found

evidence of reduced mortality as well as increased viral clear-

ance, and clinical improvements [60]. Additionally, a more re-

cent meta-analysis of larger, better quality studies confirmed

these findings [61]. However, both the PLACID and PlasmAr ran-

domized trials found no differences in disease progression or

mortality in COVID-19 patients receiving CP or best standard of

care/placebo [58, 59]. Larger, blinded, randomized control trials

are still ongoing to confirm the efficacy of CP treatment, the

RECOVERY trial in Oxford is one such Phase 3 trial of CP

(NCT04381936).

In SARS patients, early CP treatment within 14 days of infec-

tion significantly improved outcomes [62]. This has also been

suggested for COVID-19, but more studies are required to fully

evaluate this [55]. Recovered patients with high nAb titres have

relatively stable levels but these do decrease over time. Gontu et

al. observed that the optimal time window for recovered

patients to donate plasma is within 60 d.p.s.o [9].

Finally, CP treatment could be particularly beneficial for

individuals who are immunocompromised [63, 64]. The nAbs in

CP are likely targeted to a range of SARS-CoV-2 S protein epito-

pes, which is advantageous compared to single or even ‘cock-

tail’ mAb treatment where there is greater likelihood of escape

mutations [65].

Monoclonal antibodies

Many studies have tested the neutralizing capacity of mAbs

against SARS-CoV-2 in vitro (Figure 2B) and assessed their

Table 1: Summary of analysis of IgM, IgA and IgG responses to SARS-CoV-2 infection

IgM IgA IgG

Per cent seroconversion >73 [5–9] >72 [5, 6, 10] 84–100 [5–12]

Seroconversion (d.p.s.o) 10–14 [8, 13–16] 13 [16] 12–14 [8, 13–16]

Peak titre (d.p.s.o) 15–30 [3–5, 7, 9, 14, 17–19] 16–30 [3, 5, 20–23] 16–50 [3–7, 9, 17, 19, 20, 22–24]

Median seronegative prediction 46.9 days [6] 51.0 days [6]

Following infection by SARS-CoV-2, IgM, IgA and IgG are rapidly seroconverted within the first 2 weeks; IgM and IgA appear to reach their peak titre at similar d.p.s.o,

whereas IgG often peaks at a later time point.

Scourfield et al. | 3
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functionality in vivo. Neutralizing mAbs have shown a reduction

in viral load and protection from challenge in animal models

[42, 44–50, 66, 67]. This ability to inhibit infection highlights

mAbs as potential therapeutic candidates for COVID-19.

Multiple candidates are in advanced clinical trials (Table 3).

Recently, two mAb therapies (bamlanivimab, formerly LY-

CoV555, and REGN-COV2) have received emergency use authori-

zation by the Food and Drug Administration (FDA) to prevent

mild-to-moderately-infected patients from progressing to se-

vere disease. While bamlanivimab is a single mAb isolated from

the B cells of a convalescent patient [68], REGN-COV2 is a cock-

tail of two mAbs (casirivimab and imdevimab) identified using

both recovered patients and humanized mice [70]. Casirivimab

and imdevimab recognize non-overlapping epitopes on the RBD

which may overcome resistance posed by ‘viral escape’ muta-

tions, such as D614G, a missense mutation in the spike protein

that results in a more transmissible form of SARS-CoV-2 [72].

This approach of ‘antibody cocktails’ is also being explored by

AstraZeneca, with their candidate AZD7442, comprising two

mAbs, recently entering Phase 3 trials [42].

Cross-reactive nAb therapies

Multiple SARS-CoV and MERS-CoV mAbs were identified follow-

ing the SARS and MERS epidemics in 2003 and 2012, respectively

[73]. However, therapeutic developments were limited due to

the short duration of these outbreaks. Both SARS-CoV and

SARS-CoV-2 utilize ACE2 as their cell-entry receptor and the S-

glycoprotein of SARS-CoV-2 is over 70% identical to that of

SARS-CoV [74–79]. Conversely, MERS-CoV binds to the CD26 re-

ceptor and is less homologous to SARS-CoV-2 [79, 80]. Antibody

cross-reactivity could potentially allow repurposing of these

SARS-CoV mAbs to combat COVID-19.

RBD-directed mAbs, which interfere with ACE2 binding,

thereby neutralizing SARS-CoV (e.g. 80R, CR3014), were unable

to bind to SARS-CoV-2-RBD [81, 82]. Conversely, multiple SARS-

CoV-targeted mAbs, which do not compete with ACE2, have

shown potent cross-neutralizing capacity including 47D11 and

CR3022 [82–84]. The ability of CR3022 to neutralize SARS-CoV-2

has been disputed by Yuan et al., however, who used a pseudo-

virus neutralization assay to assess this rather than one with

live virus as with Huo et al. [84, 85]. A further explanation for the

differences seen is that antibodies that show cross-reactivity

recognize epitopes that are highly conserved between the

strains. For example, the epitope of CR3022 is 86% conserved be-

tween SARS-CoV and SARS-CoV-2, and the more recently iden-

tified S309 (see Table 3) binds an epitope that is 77% conserved

[47, 85]. Additional work has shown that further increasing the

conservation of CR3022’s epitope vastly increases the antibody’s

affinity to SARS-CoV-2 RBD, suggesting that antibody cross-

reactivity is highly dependent on epitope recognition [86].

Nanobodies

Efforts have also been directed towards the development of

nanobodies to treat COVID-19 (Figure 2C). Sequences of these

Figure 2: SARS-CoV-2-specific antibodies can be utilized in multiple ways to treat COVID-19. (A) Sera from recovered COVID-19 patients can be given intravenously as

CP to ABO-matched-infected patients in order to reduce infectious burden and alleviate active disease. (B) mAbs (typically IgG) can be identified following isolation of

spike/RBD-specific memory B cells, which are sourced from recovered patients or mice immunized with target antigen. Potential candidates are screened for various

parameters, including specificity to target antigen and neutralization capacity. Selected lead candidates are further optimized before clinical evaluation as both a pro-

phylactic and therapeutic. (C) The epitope-binding domain of antibody heavy chains (VHH) also has therapeutic potential. These can be isolated following immuniza-

tion of camelids (nanobodies) or by using synthetic libraries (sybodies). The diversity of VHH mRNA is screened (e.g. using phage display) to identify those that have

high affinity to the target antigen. Like mAbs, these are evaluated for their specificity and neutralization capacity before clinical evaluation. Figure created using

BioRender.com
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Table 2: Information to show the CP treatment regimen and outcome of several COVID-19 studies

Author and study type Dose No. of patients Patient severity Administration Patient outcomes

Li et al [54]

Open-label randomized clinical trial

>1:640 S-RBD-specific IgG 103 Control group:

29 life-threatening, 22 severe

CP group:

29 life-threatening, 23 severe

4–13 ml/kg of recipient

body weight

Mortality:

15.7% CP group vs. 24% control P¼ 0.30

Clinical improvement:

Severe patients

91.3% CP group vs. 68.2% control

P¼ 0.03

Critically ill patients

20.7% CP group vs. 24.1% control

P¼ 0.83

Duan et al. [55]

Case series

>1:640 nAb 10 10 severe 1 dose of 200 ml All recovered

No severe adverse effects observed

Shen et al. [56]

Case series

>1:80 nAb 5 5 critically ill 2 transfusions of 200 ml Of the five patients, three discharged

and two were in stable condition

Liu et al. [53]

Matched control

�1:320 S-specific IgG 39 CP group:

39 severe to life-threatening

Matched controls:

152 severe to life-threatening

Two transfusions of 250

ml

12.8% mortality for CP group

24.4% mortality for matched controls

(P¼ 0.039)

CP improved survival in non-intu-

bated patients (P¼0.015) but not for

intubated patients (P¼ 0.752)

Donato et al. [57]

Case series

>1:500 nAb 47 32 non-mechanically ventilated,

22% immunocompromised

and 19% had active cancer

15 mechanically ventilated

400–500 ml Non-mechanically ventilated: 15.6%

intubation rate compared to institu-

tional data (not reported; P¼ 0.038)

87.5% survival rate compared to 66%

from institutional data (P¼ 0.012)

Mechanically ventilated: 46.7% 30-day

mortality rate compared to institu-

tional data 68.5% (P¼ 0.093)

Agarwal et al. [58]

Open-label randomized control trial

>1:20 nAb 464 Moderate illness Two transfusions of

200ml

Progression to severe disease or

mortality:

19% CP group vs. 18% control

Simonovich et al. [59]

Double-blinded randomized control

>1:800 S-specific IgG 333 Patients with severe COVID-19

pneumonia

5–10 ml/kg of recipient

body weight

Mortality: 10.96% CP group vs. 11.43%

control S
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Table 3: Current leading mAb therapies against SARS-CoV-2 Spike/RBD in clinical trials

Company mAb name Comments Stage of development Study group

Eli Lilly and Company

(Developed with

AbCellera)

Bamlanivimaba

(LY-CoV555/LY3819253)

Human IgG1 isolated from conva-

lesced patient using high-

throughput microfluidic screen-

ing [68]

Phase 3—NCT04497987

‘BLAZE-2’

Nursing Home residents and staff

Phase 3—NCT04501978

‘ACTIV-3’

Inpatients

Phase 2/3—NCT04518410

‘ACTIV-2’

Outpatients

Phase 1—NCT04537910 Healthy Participants

LY-CoV555 (LY3819253) þ

LY-CoV016 (LY3832479)

Combination therapy [69] Phase 2—NCT04427501

‘BLAZE-1’

Mild to Moderate Illness

Regeneron Pharmaceuticals REGN-COV2a (Casirivimab þ

Imdevimab)

Identified from humanized mice

and convalescent samples. This

dual-antibody cocktail target

non-overlapping epitopes [70]

Phase 3—NCT04452318 Healthy adults who are household contacts

with a positive case

Phase 2/3—NCT04381936

‘RECOVERY’

COVID-19 Patients

Phase 1/2—NCT04425629 Ambulatory COVID-19 patients

Phase 1/2—NCT04426695 Hospitalized patients

Phase 1

NCT04519437

Volunteers—Healthy, Chronic stable illness

Vir Biotechnology/

GlaxoSmithKline

Sotrovimab (VIR-7831/

GSK4182136)

Fully human based on S309 IgG

which was isolated from the

memory B-cells of an individual

recovered from SARS-CoV

(cross-reactive) [47]

Phase 2/3—

NCT04545060

‘COMET-ICE’

Patients who are at high risk of hospitalization

AstraZeneca AZD7442 (Tixagevimab þ

Cilgavimab)

Antibodies with non-overlapping

epitopes identified from a con-

valescent patient [42]. The anti-

bodies have been optimized to

extend half-life so they should

be prevalent for 6–12 months—

‘Long-Acting Antibody

Combination’

Phase 3—NCT04625972

‘STORM CHASER’

Adults with potential recent (within 8 days)

exposure to a confirmed positive case

Phase 3—NCT04625725

‘PROVENT’

Adults who have no history of SARS-CoV-2 but

have been exposed

Celltrion Regdanvimab (CT-P59) Targets the RBD of the spike

protein

Phase 2/3—NCT04602000 Diagnosed outpatients with mild conditions

Included are the most advanced candidates, determined as those that have entered Phase 2/3 clinical stage.
aThose which have received emergency use authorization by the FDA. Table created with aid from Yang et al. [71].
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single-domain antibodies (VHH) capable of blocking the RBD/

ACE2 interaction and neutralize SARS-CoV-2 have been identi-

fied using synthetic libraries (synthetic nanobodies, sybodies)

and camelids (nanobodies), which produce heavy-chain-only

antibodies [13, 87–95]. Nanobodies have multiple benefits over

conventional antibodies such as their biophysical and biochem-

ical characteristics, and ease of manufacture and varied admin-

istrative potential (e.g. via inhalation) [91, 96].

Recent literature has shown a variety of ways in which anti-

bodies can be used as treatment for COVID-19. While CP may

work as a polyclonal approach, mAbs and nanobodies recogniz-

ing the RBD epitope of the virus are more promising since they

are potent, high titre, relatively safe and can be readily manufac-

tured in bulk. Because of this, multiple candidates are reaching

clinical trials within a short timescale. Candidates recognizing

epitopes that are highly conserved between coronaviruses have

scope as potential pan-coronavirus therapies and may protect

individuals from future epidemic/pandemic strains.

ANTIBODY RESPONSES TO SARS-COV-2
VACCINES AND LONG-TERM IMMUNITY

Prophylactic vaccines are in development to protect against

COVID-19, with the aim of inducing nAb and T cell responses to

combat infection. In vivo antiviral efficacy has been demon-

strated in animal models, including preventing infection when

challenged, and is being tested in clinical trials [97–117].

The majority of vaccines include the whole SARS-CoV-2

spike protein, and may also include the nucleocapsid protein

(NP), while others only employ the RBD [97–109, 112–117]. The

NP antigen does not generate antibodies that are neutralizing

against SARS-CoV-2, whereas RBD and spike protein antigens

elicit nAb responses [102]. The RBD and S1 domain of the spike

protein unsurprisingly produce the greatest nAb responses, as

these domains are responsible for ACE2 binding and gaining en-

try to host cells [118, 119]. Smith et al. and Yarmarkovich et al.

took a computational approach to predict epitopes that produce

humoral and cell-mediated responses, which may be broadly

protective across various coronaviruses [120, 121].

Unfortunately, some non-neutralizing antibodies may have the

potential to bridge viral entry into host immune cells via Fc

receptors, known as antibody-dependent enhancement (ADE).

This leads to increased infectivity, higher viral loads, more se-

vere disease and has been observed in previous SARS/MERS

vaccines [122]. Thus far, no study has yet shown evidence of

vaccine-induced ADE for SARS-CoV-2.

The duration of long-term immunity to SARS-CoV-2 follow-

ing infection or vaccination, as well as the level of nAb required

for immunity, is currently unknown. Using a mathematical

model of antibody kinetics determined by follow-up of corona-

virus convalescent patients, one study has predicted that anti-

body responses will decline according to a biphasic pattern—a

rapid decline initially, followed by a slower rate of decay [123].

This study indicated that, due to the substantial initial reduc-

tion of antibodies, up to 50% of patients could test seronegative

after just 1 year [123]. Although these results cannot be verified

until those patients are followed for several years following in-

fection, other studies have estimated the time of seroreversion

of SARS-CoV-2 antibodies based on the time taken for patients

to become seronegative; 46.9 days for IgM and 51 days for IgA,

as of yet, there is no consensus on IgG (Table 1) [6]. The nAb

titres initially increase and remain stable for 3–4 months [5,

124–127]. Individuals with high peak nAb titres were observed

to maintain these, but levels decreased to those of less severe

groups at >90 d.p.s.o [5, 127].

The duration of the immune response resulting from sea-

sonal coronavirus infection varies, but the results obtained

from these can help predict the duration of antibody responses

until longer-term studies with large cohorts of patients can be

carried out for SARS-CoV-2. Previous work carried out on SARS-

CoV has indicated convalescent patients remained IgG positive

for 2–4 years and antibody responses declined after 2–3 years,

with severely affected individuals more likely to maintain de-

tectable responses [128–134]. However, antibody responses for

six out of nine volunteers inoculated with seasonal coronavirus

strain 229E were no longer sufficient to prevent reinfection 1

year later [135]. Furthermore, a 35-year-long study found that

most seasonal coronavirus reinfections occurred every 3 years,

depending on re-exposure and lingering immunity [136].

Adapted seasonal coronavirus modelling estimates that SARS-

CoV-2 immunity may last approximately 45 weeks, but an anti-

body response may not confer complete protection from rein-

fection [133, 137].

Reinfection has been reported in a number of cases, summa-

rized in Table 4. The majority of the reinfected individuals had

an initial mild or asymptomatic infection, and these may not

elicit a sufficiently robust antibody response to be sustained

and protective since patients whose nAb responses were mea-

sured had low to undetectable responses [138–145]. These

Table 4: A summary of SARS-CoV-2 reinfection cases confirmed by whole-genome sequencing

Location Patient: age (years)

and sex (M/F)

Severity of first

infection

Severity of second

infection

Days between first

and second infection

Reference

Hong Kong 34 (M) Mild Asymptomatic 142 [138]

USA 25 (M) Mild Severe 48 [139]

42 (M) Mild Moderate 51 [140]

60–69a Severe Mild 118 [141]

Ecuador 46 (M) Mild Moderate 47 [142]

India 25 (M) Asymptomatic Asymptomaticb 100 [143]

28 (F) Asymptomatic Asymptomaticb 101

27 (M) Mild Moderate 66 [144]

31 (M) Asymptomatic Mild 65

27 (M) Asymptomatic Mild 19

24 (F) Mild Moderate 55

aPatient details only gave age range of 60–69 years.
bAsymptomatic but had a higher viral load upon reinfection.
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reinfection cases highlight that since most cases of COVID-19

will be mild, reinfection is possible especially following a reduc-

tion in nAbs and the possibility of spike protein mutations that

reduce nAb-binding affinity [65]. Two patients were reinfected

with a D614G variant, and one patient was reinfected with an

N440K variant, which is a known nAb escape mutation [65, 140,

141, 143]. A recent study has demonstrated that although anti-

body titres decrease substantially over time, neutralization ac-

tivity is retained for up to 6 months [146]. Longer studies

involving more individuals are required to evaluate when peo-

ple might become vulnerable to reinfection. This work supports

a vaccine-based approach to controlling SARS-CoV-2 transmis-

sion but if serology of vaccinated individuals follows a similar

pattern to those who have recovered, then regular boosters may

be required.

Conclusion

Antibodies are an important aspect of the immune response to

COVID-19. While there remains a lot to learn, it is encouraging

to see that in a matter of months, many promising antibody-

based prophylactics and therapies are making their way into

the clinic. Considering the number of reported cases of SARS-

CoV-2 reinfection, the uncertainty surrounding long-term im-

munity will hopefully be more conclusively addressed in the

months to come. To date, the current estimate of antibody lon-

gevity is 46.9 days for IgA and 51 days for IgM, with no consen-

sus on IgG. Reinfections have occurred between 19 and 142

days, with the majority greater than 50 days, after recovery

from the first infection, resulting in both mild and severe ill-

ness. These numbers could change greatly in the coming

months and may not be representative of the population. It is

important to stress that antibodies are not the sole immune de-

fence against COVID-19, and many vaccines aim to elicit general

adaptive immune responses. Evaluating the collective immune

response to SARS-CoV-2 will advance our understanding of the

mechanism of disease and its control.
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