197 research outputs found

    Assessing brain immune activation in psychiatric disorders:Clinical and preclinical PET imaging studies of the 18-kDa translocator protein

    Get PDF
    Accumulating evidence from different lines of research suggests an involvement of the immune system in the pathophysiology of several psychiatric disorders. During recent years, a series of positron emission tomography (PET) studies have been published using radioligands for the translocator protein (TSPO) to study microglia activation in schizophrenia, bipolar I disorder, major depression, autism spectrum disorder, and drug abuse. The results have been somewhat conflicting, which could be due to differences both in patient sample characteristics and in PET methods. In particular, further work is needed to address both methodological and biological sources of variability in TSPO levels, a process in which the use of animal models and small animal PET systems can be a valuable tool. Given this development, PET studies of immune activation have the potential to further increase our understanding of disease mechanisms in psychiatric disorders, which is a requisite in the search for new treatment approaches. Furthermore, molecular imaging could become an important clinical tool for identifying specific subgroups of patients or disease stages that would benefit from treatment targeting the immune system

    Partial volume correction of brain PET studies using iterative deconvolution in combination with HYPR denoising

    Get PDF
    Background: Accurate quantification of PET studies depends on the spatial resolution of the PET data. The commonly limited PET resolution results in partial volume effects (PVE). Iterative deconvolution methods (IDM) have been proposed as a means to correct for PVE. IDM improves spatial resolution of PET studies without the need for structural information (e.g. MR scans). On the other hand, deconvolution also increases noise, which results in lower signal-to-noise ratios (SNR). The aim of this study was to implement IDM in combination with HighlY constrained back-PRojection (HYPR) denoising to mitigate poor SNR properties of conventional IDM.Methods: An anthropomorphic Hoffman brain phantom was filled with an [F-18]FDG solution of similar to 25 kBq mL(-1) and scanned for 30 min on a Philips Ingenuity TF PET/CT scanner (Philips, Cleveland, USA) using a dynamic brain protocol with various frame durations ranging from 10 to 300 s. Van Cittert IDM was used for PVC of the scans. In addition, HYPR was used to improve SNR of the dynamic PET images, applying it both before and/or after IDM. The Hoffman phantom dataset was used to optimise IDM parameters (number of iterations, type of algorithm, with/without HYPR) and the order of HYPR implementation based on the best average agreement of measured and actual activity concentrations in the regions. Next, dynamic [C-11]flumazenil (five healthy subjects) and [C-11]PIB (four healthy subjects and four patients with Alzheimer's disease) scans were used to assess the impact of IDM with and without HYPR on plasma input-derived distribution volumes (V-T) across various regions of the brain.Results: In the case of [C-11]flumazenil scans, Hypr-IDM-Hypr showed an increase of 5 to 20% in the regional V-T whereas a 0 to 10% increase or decrease was seen in the case of [C-11]PIB depending on the volume of interest or type of subject (healthy or patient). References for these comparisons were the V(T)s from the PVE-uncorrected scans.Conclusions: IDM improved quantitative accuracy of measured activity concentrations. Moreover, the use of IDM in combination with HYPR (Hypr-IDM-Hypr) was able to correct for PVE without increasing noise.</p

    Comparison of oxygen-15 PET and transcranial Doppler CO2-reactivity measurements in identifying haemodynamic compromise in patients with symptomatic occlusion of the internal carotid artery

    Get PDF
    BACKGROUND: Transcranial Doppler (TCD) CO(2)-reactivity and oxygen-15 positron emission tomography (PET) have both been used to measure the cerebral haemodynamic state in patients who may have a compromised blood flow. Our purpose was to investigate whether PET and TCD identify the same patients with an impaired flow state of the brain in patients with internal carotid artery (ICA) occlusion. METHODS: Patients with recent transient ischaemic attack or minor ischaemic stroke associated with ICA occlusion underwent TCD with measurement of CO(2)-reactivity and oxygen-15 PET within a median time interval of 6 days. RESULTS: We included 24 patients (mean age 64 ± 10 years). Seventeen (71%) patients had impaired CO(2)-reactivity (≤20%), of whom six had absent reactivity (0%) or steal (<0%) in the hemisphere ipsilateral to the ICA occlusion. PET of the perfusion state of the hemisphere ipsilateral to the ICA occlusion demonstrated stage 1 haemodynamic compromise (decreased cerebral blood flow (CBF) or increased cerebral blood volume (CBV) without increased oxygen extraction fraction (OEF)) in 13 patients and stage 2 (increased OEF) in 2 patients. In 12 patients (50%), there was agreement between TCD and PET, indicating haemodynamic compromise in 10 and a normal flow state of the brain in 2 patients. There was no significant correlation between CO(2)-reactivity and CBF ipsilateral/contralateral hemispheric ratio (r = 0.168, p value = 0.432), OEF ratio (r = −0.242, p value = 0.255), or CBV/CBF ratio (r = −0.368, p value = 0.077). CONCLUSIONS: In patients with symptomatic ICA occlusion, identification of an impaired flow state of the brain by PET and TCD CO(2)-reactivity shows concordance in only half of the patients

    Impact of New Scatter Correction Strategies on High-Resolution Research Tomograph Brain PET Studies

    Get PDF
    The aim of this study is to evaluate the impact of different scatter correction strategies on quantification of high-resolution research tomograph (HRRT) data for three tracers covering a wide range in kinetic profiles. Healthy subjects received dynamic HRRT scans using either (R)-[C-11]verapamil (n = 5), [C-11]raclopride (n = 5) or [C-11]flumazenil (n = 5). To reduce the effects of patient motion on scatter scaling factors, a margin in the attenuation correction factor (ACF) sinogram was applied prior to 2D or 3D single scatter simulation (SSS). Some (R)-[C-11]verapamil studies showed prominent artefacts that disappeared with an ACF-margin of 10 mm or more. Use of 3D SSS for (R)-[C-11]verapamil showed a statistically significant increase in volume of distribution compared with 2D SSS (p 0.05). When there is a patient motion-induced mismatch between transmission and emission scans, applying an ACF-margin resulted in more reliable scatter scaling factors but did not change (and/or deteriorate) quantification

    Model selection criteria for dynamic brain PET studies

    Get PDF
    BACKGROUND: Several criteria exist to identify the optimal model for quantification of tracer kinetics. The purpose of this study was to evaluate the correspondence in kinetic model preference identification for brain PET studies among five model selection criteria: Akaike Information Criterion (AIC), AIC unbiased (AICC), model selection criterion (MSC), Schwartz Criterion (SC), and F-test. MATERIALS AND METHODS: Six tracers were evaluated: [11C]FMZ, [11C]GMOM, [11C]PK11195, [11C]Raclopride, [18F]FDG, and [11C]PHT, including data from five subjects per tracer. Time activity curves (TACs) were analysed using six plasma input models: reversible single-tissue model (1T2k), irreversible two-tissue model (2T3k), and reversible two-tissue model (2T4k), all with and without blood volume fraction parameter (V B). For each tracer and criterion, the percentage of TACs preferring a certain model was calculated. RESULTS: For all radiotracers, strong agreement was seen across the model selection criteria. The F-test was considered as the reference, as it is a frequently used hypothesis test. The F-test confirmed the AIC preferred model in 87% of all cases. The strongest (but minimal) disagreement across regional TACs was found when comparing AIC with AICC. Despite these regional discrepancies, same preferred kinetic model was obtained using all criteria, with an exception of one FMZ subject. CONCLUSION: In conclusion, all five model selection criteria resulted in similar conclusions with only minor differences that did not affect overall model selection

    The effect of amyloid pathology and glucose metabolism on cortical volume loss over time in Alzheimer’s disease

    Get PDF
    Purpose: The present multimodal neuroimaging study examined whether amyloid pathology and glucose metabolism are related to cortical volume loss over time in Alzheimer’s disease (AD) patients and healthy elderly controls. Methods: Structural MRI scans of eleven AD patients and ten controls were available at baseline and follow-up (mean interval 2.5 years). Change in brain structure over time was defined as percent change of cortical volume within seven a-priori defined regions that typically show the strongest structural loss in AD. In addition, two PET scans were performed at baseline: [[superscript 11]C]PIB to assess amyloid-β plaque load and [[superscript 18]F]FDG to assess glucose metabolism. [[superscript 11]C]PIB binding and [[superscript 18]F]FDG uptake were measured in the precuneus, a region in which both amyloid deposition and glucose hypometabolism occur early in the course of AD. Results: While amyloid-β plaque load at baseline was not related to cortical volume loss over time in either group, glucose metabolism within the group of AD patients was significantly related to volume loss over time (rho=0.56, p<0.05). Conclusion:The present study shows that in a group of AD patients amyloid-β plaque load as measured by [[superscript 11]C]PIB behaves as a trait marker (i.e., all AD patients showed elevated levels of amyloid, not related to subsequent disease course), whilst hypometabolism as measured by [[superscript 18]F]FDG changed over time indicating that it could serve as a state marker that is predictive of neurodegeneration.Hersenstichting Nederland (KS2011(1)-24)Athinoula A. Martinos Center for Biomedical ImagingInternationale Stichting Alzheimer Onderzoek (Project Number 11539

    Repeatability of parametric methods for [F-18]florbetapir imaging in Alzheimer's disease and healthy controls:A test-retest study

    Get PDF
    Accumulation of amyloid beta (Aβ) is one of the pathological hallmarks of Alzheimer’s disease (AD), which can be visualized using [18F]florbetapir positron emission tomography (PET). The aim of this study was to evaluate various parametric methods and to assess their test-retest (TRT) reliability. Two 90 min dynamic [18F]florbetapir PET scans, including arterial sampling, were acquired (n = 8 AD patient, n = 8 controls). The following parametric methods were used; (reference:cerebellum); Logan and spectral analysis (SA), receptor parametric mapping (RPM), simplified reference tissue model2 (SRTM2), reference Logan (rLogan) and standardized uptake value ratios (SUVr(50–70)). BPND+1, DVR, VT and SUVr were compared with corresponding estimates (VT or DVR) from the plasma input reversible two tissue compartmental (2T4k_VB) model with corresponding TRT values for 90-scan duration. RPM (r2 = 0.92; slope = 0.91), Logan (r2 = 0.95; slope = 0.84) and rLogan (r2 = 0.94; slope = 0.88), and SRTM2 (r2 = 0.91; slope = 0.83), SA (r2 = 0.91; slope = 0.88), SUVr (r2 = 0.84; slope = 1.16) correlated well with their 2T4k_VB counterparts. RPM (controls: 1%, AD: 3%), rLogan (controls: 1%, AD: 3%) and SUVr(50–70) (controls: 3%, AD: 8%) showed an excellent TRT reliability. In conclusion, most parametric methods showed excellent performance for [18F]florbetapir, but RPM and rLogan seem the methods of choice, combining the highest accuracy and best TRT reliability

    Performance of a [18F]Flortaucipir PET Visual Read Method Across the Alzheimer Disease Continuum and in Dementia With Lewy Bodies

    Get PDF
    Background and Objectives: Recently, the US Food and Drug Administration approved the tau-binding radiotracer [18F]flortaucipir and an accompanying visual read method to support the diagnostic process in cognitively impaired patients assessed for Alzheimer disease (AD). Studies evaluating this visual read method are limited. In this study, we evaluated the performance of the visual read method in participants along the AD continuum and dementia with Lewy bodies (DLB) by determining its reliability, accordance with semiquantitative analyses, and associations with clinically relevant variables. // Methods: We included participants who underwent tau-PET at Amsterdam University Medical Center. A subset underwent follow-up tau-PET. Two trained nuclear medicine physicians visually assessed all scans. Inter-reader agreement was calculated using Cohen κ. To examine the concordance of visual read tau positivity with semiquantification, we defined standardized uptake value ratio (SUVr) positivity using different threshold approaches. To evaluate the prognostic value of tau-PET visual read, we performed linear mixed models with longitudinal Mini-Mental State Examination (MMSE). // Results: We included 263 participants (mean age 68.5 years, 45.6% female), including 147 cognitively unimpaired (CU) participants, 97 amyloid-positive participants with mild cognitive impairment or AD dementia (AD), and 19 participants with DLB. The visual read inter-reader agreement was excellent (κ = 0.95, CI 0.91–0.99). None of the amyloid-negative CU participants (0/92 [0%]) and 1 amyloid-negative participant with DLB (1/12 [8.3%]) were tau-positive. Among amyloid-positive participants, 13 CU participants (13/52 [25.0%]), 85 with AD (85/97 [87.6%]), and 3 with DLB (3/7 [42.9%]) were tau-positive. Two-year follow-up visual read status was identical to baseline. Tau-PET visual read corresponded strongly to SUVr status, with up to 90.4% concordance. Visual read tau positivity was associated with a decline on the MMSE in CU participants (β = −0.52, CI −0.74 to −0.30, p < 0.001) and participants with AD (β = −0.30, CI −0.58 to −0.02, p = 0.04). // Discussion: The excellent inter-reader agreement, strong correspondence with SUVr, and longitudinal stability indicate that the visual read method is reliable and robust, supporting clinical application. Furthermore, visual read tau positivity was associated with prospective cognitive decline, highlighting its additional prognostic potential. Future studies in unselected cohorts are needed for a better generalizability to the clinical population. // Classification of Evidence: This study provides Class II evidence that [18F]flortaucipir visual read accurately distinguishes patients with low tau-tracer binding from those with high tau-tracer binding and is associated with amyloid positivity and cognitive decline. // Glossary: Aβ=β-amyloid; AD=Alzheimer disease; CU=cognitively unimpaired; DLB=dementia with Lewy bodies; US FDA=US Food and Drug Administration; GMM=Gaussian mixture model; LMM=linear mixed model; MCI=mild cognitive impairment; MMSE=Mini-Mental State Examination; OR=odds ratio; ROI=region of interest; SCD=subjective cognitive decline; SUVr=standardized uptake value ratio

    Plasma amyloid-β oligomerization assay as a pre-screening test for amyloid status

    Get PDF
    Objective We assessed the performance of plasma amyloid oligomerization tendency (OAβ) as a marker for abnormal amyloid status. Additionally, we examined long-term storage effects on plasma OAβ. Methods We included 399 subjects regardless of clinical diagnosis from the Amsterdam Dementia Cohort and European Medical Information Framework for AD project (age, 63.8 ± 6.6; 44% female). Amyloid status was determined by visual read on positron emission tomography (PET; nabnormal = 206). Plasma OAβ was measured using the multimer detection system (MDS). Long-term storage effects on MDS-OAβ were assessed using general linear models. Associations between plasma MDS-OAβ and Aβ-PET status were assessed using logistic regression and receiver operating characteristics analyses. Correlations between plasma MDS-OAβ and CSF biomarker levels were evaluated using Pearson correlation analyses. Results MDS-OAβ was higher in individuals with abnormal amyloid, and it identified abnormal Aβ-PET with an area under the curve (AUC) of 0.74 (95% CI, 0.67–0.81), especially in samples with a storage duration < 4 years. Combining APOEe4 and age with plasma MDS-OAβ revealed an AUC of 81% for abnormal amyloid PET status (95% CI, 74–87%). Plasma MDS-OAβ correlated negatively with MMSE (r = − 0.29, p < .01) and CSF Aβ42 (r = − 0.20, p < 0.05) and positively with CSF Tau (r = 0.20, p = 0.01). Conclusions Plasma MDS-OAβ combined with APOEe4 and age accurately identifies brain amyloidosis in a large Aβ-confirmed population. Using plasma MDS-OAβ as a screener reduced the costs and number of PET scans needed to screen for amyloidosis, which is relevant for clinical trials. Additionally, plasma MDS-OAβ levels appeared affected by long-term storage duration, which could be of interest for others measuring plasma Aβ biomarkers.The Alzheimer Center Amsterdam is supported by Stichting Alzheimer Nederland and Stichting VUmc fonds. Research of the Alzheimer center Amsterdam is part of the neurodegeneration research program of Amsterdam Neuroscience. The clinical database structure was developed with funding from Stichting Dioraphte. The VUmc Biobank is supported by VUmc. The research leading to these results has received support from the Innovative Medicines Initiative Joint Undertaking under EMIF grant agreement no. 115372, resources of which are composed of financial contribution from the European Unions Seventh Framework Programme (FP7/2007-2013) and EFPIA companies in kind contribution
    corecore