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Abstract
Background and Objectives
Recently, the US Food and Drug Administration approved the tau-binding radiotracer [18F]
flortaucipir and an accompanying visual read method to support the diagnostic process in
cognitively impaired patients assessed for Alzheimer disease (AD). Studies evaluating this visual
read method are limited. In this study, we evaluated the performance of the visual read method
in participants along the AD continuum and dementia with Lewy bodies (DLB) by determining
its reliability, accordance with semiquantitative analyses, and associations with clinically rele-
vant variables.

Methods
We included participants who underwent tau-PET at AmsterdamUniversity Medical Center. A
subset underwent follow-up tau-PET. Two trained nuclear medicine physicians visually
assessed all scans. Inter-reader agreement was calculated using Cohen κ. To examine the
concordance of visual read tau positivity with semiquantification, we defined standardized
uptake value ratio (SUVr) positivity using different threshold approaches. To evaluate the
prognostic value of tau-PET visual read, we performed linear mixed models with longitudinal
Mini-Mental State Examination (MMSE).

Results
We included 263 participants (mean age 68.5 years, 45.6% female), including 147 cognitively
unimpaired (CU) participants, 97 amyloid-positive participants with mild cognitive impair-
ment or AD dementia (AD), and 19 participants with DLB. The visual read inter-reader
agreement was excellent (κ = 0.95, CI 0.91–0.99). None of the amyloid-negative CU partici-
pants (0/92 [0%]) and 1 amyloid-negative participant with DLB (1/12 [8.3%]) were tau-
positive. Among amyloid-positive participants, 13 CU participants (13/52 [25.0%]), 85 with
AD (85/97 [87.6%]), and 3 with DLB (3/7 [42.9%]) were tau-positive. Two-year follow-up
visual read status was identical to baseline. Tau-PET visual read corresponded strongly to SUVr
status, with up to 90.4% concordance. Visual read tau positivity was associated with a decline on
the MMSE in CU participants (β = −0.52, CI −0.74 to −0.30, p < 0.001) and participants with
AD (β = −0.30, CI −0.58 to −0.02, p = 0.04).
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Discussion
The excellent inter-reader agreement, strong correspondence with SUVr, and longitudinal stability indicate that the visual read
method is reliable and robust, supporting clinical application. Furthermore, visual read tau positivity was associated with
prospective cognitive decline, highlighting its additional prognostic potential. Future studies in unselected cohorts are needed
for a better generalizability to the clinical population.

Classification of Evidence
This study provides Class II evidence that [18F]flortaucipir visual read accurately distinguishes patients with low tau-tracer
binding from those with high tau-tracer binding and is associated with amyloid positivity and cognitive decline.

Introduction
Alzheimer disease (AD) is pathologically characterized by
β-amyloid (Aβ) plaques and neurofibrillary tau tangles.1 The
clinical application of biomarkers for Aβ pathology have
substantially improved the diagnostic process of AD de-
mentia, leading to increased diagnostic confidence and
changes in treatment strategies.2,3 However, PET biomarkers
for tau pathology have shown higher specificity for AD
dementia4-6 because the presence of incidental or comorbid
Aβ pathology is common, especially at older age and in APOE
e4 carriers.7,8 Moreover, tau-PET is more strongly associated
with cognitive decline and atrophy.9,10 Therefore, tau-PET
holds potential to become an important diagnostic and
prognostic tool in the clinic.

Recently, the US Food and Drug Administration (FDA) ap-
proved the tau-binding radiotracer [18F]flortaucipir and an
accompanying visual read method to support the diagnostic
process in cognitively impaired patients assessed for
AD. The US FDA–approved visual read method defines
increased tracer binding in late-stage tau regions (corre-
sponding to tau-PET Braak stages IV–VI11,12) as tau-
positive, whereas increased tracer binding isolated to
early-stage tau regions (corresponding to tau-PET Braak
stages I–III11,12) or absence of increased tracer binding is
defined as tau-negative. As a result, this method has
strong specificity for AD, given the focus on late-stage tau
regions.13 Moreover, this method provides valuable prog-
nostic information.14 However, studies evaluating the
performance of this visual read method in independent
samples are limited.

The aim of this study was to evaluate the performance of
the US FDA–approved [18F]flortaucipir PET visual read
method, by determining its reliability, accordance with
semiquantitative analyses, and associations with clinically

relevant variables. We included participants along the AD
continuum and participants with dementia with Lewy bodies
(DLB) because AD-type tau tangles are observed in approx-
imately 50% of patients with DLB.15 To evaluate key prop-
erties of the method, we assessed inter-reader agreement,
examined longitudinal stability of the method, and compared
it with a semiquantitative measure of tracer binding. To
evaluate the method in relation to clinically relevant variables,
we examined associations with clinical diagnosis, Aβ status,
demographic factors, and prospective cognitive decline. The
primary research questions addressed in this study are as
follows: is the visual read method reliable, and is tau-PET
visual read associated with clinical diagnosis, Aβ status, and
cognitive decline.

Methods
Participants
We included 263 participants who underwent [18F]flor-
taucipir PET between 2015 and 2021 for research purposes
at Amsterdam University Medical Center (Amsterdam, the
Netherlands). The study population largely consisted of
participants from the Amsterdam Dementia Cohort,16,17

the Subjective Cognitive Impairment Cohort,18 the De-
mentia with Lewy Bodies Project,19 and the Amsterdam
substudy of the EMIF-AD PreclinAD study.20 From these
cohorts, cognitively normal identical twins (n = 82) and
cognitively normal participants with subjective cognitive
decline (SCD; n = 56) were included along with cognitively
impaired participants with mild cognitive impairment
(MCI; n = 12), those with probable AD dementia (n = 85),
and those with DLB (n = 19). All participants with MCI and
probable AD dementia had positive Aβ PET and/or CSF
biomarkers.21,22 Furthermore, the study population con-
sisted of 9 healthy controls who were not part of the
aforementioned cohorts but who underwent tau-PET as

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; CU = cognitively unimpaired; DLB = dementia with Lewy bodies; US FDA = US
Food and Drug Administration; GMM = Gaussian mixture model; LMM = linear mixed model; MCI = mild cognitive
impairment;MMSE = Mini-Mental State Examination;OR = odds ratio; ROI = region of interest; SCD = subjective cognitive
decline; SUVr = standardized uptake value ratio.
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control participants in prior PET kinetic modeling
studies.23,24 Details are described in the eMethods (links.
lww.com/WNL/D110). Exclusion criteria for undergoing
tau-PET included large structural abnormalities on MRI, a
history of severe traumatic brain injury, and (prior) use of
Aβ-lowering or tau-lowering drugs.

Participants were categorized into 3 groups based on their
clinical presentation: (1) cognitively unimpaired (CU) par-
ticipants (those with SCD, twins, and healthy controls), (2)
cognitively impaired participants with AD (Aβ-positive par-
ticipants with MCI and those with probable AD dementia,
hereafter referred to as “AD”), and (3) participants with DLB.
All participants had cross-sectional Mini-Mental State Ex-
amination (MMSE; global cognitive functioning) available,
and 140 participants had prospective 1.5 ± 1.7 years follow-up
MMSE available. A total of 594 MMSE scores (number of
visits per participant 1–7 [median 2], time between visits
varied per participant) were included.

Standard Protocol Approvals, Registrations,
and Patient Consents
All participants provided written informed consent. All
studies were approved by the Medical Ethics Review Com-
mittee of the VU University Medical Center (Amsterdam, the
Netherlands).

Aβ Status
Aβ status of CU participants was determined by [18F]flor-
betapir or [18F]flutemetamol PET visual read according to
company guidelines. Aβ status of participants with AD and
DLB were determined at diagnostic screening by either PET
visual read ([18F]florbetapir, [18F]flutemetamol, and [18F]
florbetaben according to company guidelines or [11C]PiB
according to previously published methods25) or CSF using
previously determined cutoffs.26 If both PET and CSF were
available, PET was chosen. We used Aβ status that was
available in closest proximity in time to tau-PET. Aβ status
was missing for 3 CU participants.

Tau-PET and MRI Acquisition
All participants underwent baseline tau-PET. A subset (n = 50
CU participants and n = 40 with AD) underwent 2.1 ± 0.5
years of follow-up tau-PET of which 15 CU participants ad-
ditionally underwent 4.5 ± 0.4 years of follow-up tau-PET. All
scans were acquired using a dual time point dynamic protocol,
starting immediately after [18F]flortaucipir administration
and including at least the 0–30 minutes and 80–100 minutes
postinjection time interval.27,28 All scans were acquired on a
Philips TF-64 PET/CT scanner (baseline: n = 244 Philips
Ingenuity and n = 19 Philips Gemini; follow-up: n = 105
Philips Ingenuity; Philips Medical System, Best, the Nether-
lands). Low-dose CT scans were acquired before both parts of
the dynamic scan for attenuation correction purposes. Par-
ticipants underwent 3-dimensional T1-weightedMRI on a 3T
scanner for coregistration and brain region-of-interest
purposes.

Tau-PET Visual Read
Tau-PET scans were prepared and visually read according
to US FDA–approved guidelines.13 First, dynamic PET
frames were summed from 80 to 100 minutes postinjection.
T1-weighted MRIs were then coregistered to the corre-
sponding summed image using Vinci software (Max Planck
Institute, Cologne, Germany). Scans were reoriented to
remove head tilt. Background activity was determined by
calculating the mean counts in the cerebellum (manually
delineated in the transversal plane at the maximum cross-
sectional area). Voxels of increased activity were defined as
>65% above the cerebellar average. Following US FDA–
approved guidelines, increased activity in posterolateral
temporal, occipital, or parietal/precuneus region(s) in ei-
ther hemisphere, with or without frontal involvement,
resulted in a positive visual read. The absence of increased
activity or increased activity isolated to medial temporal,
anterolateral temporal, and/or frontal regions resulted in a
negative visual read. Patterns of isolated or small non-
confluent foci of increased activity were not defined as tau-
positive.

All scans were visually read by 2 trained nuclear medicine
physicians (B.v.B. and E.v.d.G.) blinded to clinical in-
formation. The 2 readers gave confidence scores for each scan
ranging from 1 (lowest confidence) to 5 (highest confidence).
Scans were presented in a random order. The 2 nuclear
medicine physicians were first trained with a test set of 20
randomly selected baseline scans. The 20 test set scans were
visually read for a second time within the complete set of 263
baseline scans, from which intra-reader agreement was de-
termined. Subsequently, the 105 follow-up scans were
assessed. Scans with between-reader disagreement were re-
read by the 2 nuclear medicine physicians in a joint consensus
meeting resulting in a consensus read.

Tau-PET Standardized Uptake Value Ratio
To compare tau-PET visual read with a semiquantitative
measure of tracer binding, we calculated standardized uptake
value ratios (SUVrs) using whole cerebellar gray matter as
reference region in 2 regions-of-interests (ROIs) based on the
Hammers and Svarer atlasses.29,30 First, we calculated SUVr in
a temporal meta-ROI corresponding to a volume-weighted
average of the bilateral entorhinal cortex, amygdala, para-
hippocampal gyrus, fusiform gyrus, and middle, inferior and
superior temporal cortices. The temporal meta-ROI is com-
monly used and has shown high discriminative accuracy be-
tween AD and non-AD dementias.4,31 However, the temporal
meta-ROI also includes medial temporal regions and there-
fore does not fully correspond to regions most relevant for
visual read. Therefore, we additionally calculated SUVr in a
temporoparietal ROI (only including regions that can con-
tribute to a positive visual read), including the bilateral in-
ferior, middle, and superior temporal cortices, superior
parietal gyrus, inferolateral parietal lobe, and the posterior
cingulate gyrus.4
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Statistical Analyses
Demographic characteristics between groups were compared
using t tests, χ2, and Mann-Whitney U tests. To assess inter-
reader and intra-reader reliabilities, Cohen κ coefficients were
calculated. The prevalence of visual-read tau positivity was
determined per diagnostic group (CU, AD, and DLB) strat-
ified by Aβ status. Independent t tests were performed to
compare tau-PET SUVr between visual read tau-negative and
visual read tau-positive participants. To examine the corre-
spondence of tau status defined by visual read and tau status
defined by SUVr, we obtained SUVr thresholds (ROI spe-
cific) using 2 approaches: first, by fitting a Gaussian mixture
model (GMM) with 2 components resulting in a threshold
representing the mean of the mu of both components32,33 and
second, by defining the threshold as mean + [2 × SD] of Aβ-
negative CU participants.4 Percentages of concordance and
discordance in tau status between visual read and the 2 SUVr
thresholds were calculated. Next, we assessed associations of
tau-PET visual read with age, sex, APOE e4 carriership, and
prospective cognitive decline in CU and AD. There was too
limited power in the DLB group due to low number of tau-
positive cases with DLB. Associations of tau-PET visual read
(outcome) with age, sex, and APOE e4 (predictors) were
performed using bivariate binary logistic regressions (separate
models per predictor). A multivariable logistic regression in-
cluding all significant predictors was performed to test pre-
dictors’ independent effects. Associations of tau-PET visual
read (predictor) with prospective decline on the MMSE
(outcome) were performed using age-adjusted, sex-adjusted,
and education-adjusted linear mixed models (LMMs) with a
random intercept (MMSE; visual read × time + visual read +
time + age + sex + education + (1 | participant)). A random
slope (time | participant) was added if it improved model fit
based on the Akaike information criterion and the χ2 statistic
(see eMethods, links.lww.com/WNL/D110). Time reflected
time between tau-PET and MMSE. Education was based on
the Dutch Verhage score.34 Continuous variables were z

transformed before model entry. To test whether SUVr was
able to explain additional variance in cognitive decline within
visual read tau-positive AD, an additional age-adjusted, sex-
adjusted, and education-adjusted LMMwith a subject-specific
intercept and temporal meta-ROI SUVr, time, and an in-
teraction term of SUVr × time was performed in tau-positive
participants with AD (MMSE; tau-PET SUVr × time + tau-
PET SUVr + time + age + sex + education + [1 | participant]).

We used R version 4.0.3 for statistical analyses. p Value <0.05
was considered significant.

Data Availability
Anonymized data that support the findings of this study are
available on reasonable request from a qualified investigator.

Results
Participants
We included 263 participants including 147 CU participants,
97 participants with AD, and 19 participants with DLB
(Table 1). By design, all participants with AD were Aβ-posi-
tive. Furthermore, 52 CU participants (36.1%) and 7 partic-
ipants with DLB (36.8%) were Aβ-positive. Participants with
AD were significantly younger (65.6 ± 7.6 years) compared
with CU participants (70.2 ± 7.7, p < 0.001) and participants
with DLB (69.5 ± 5.6, p = 0.03). There were fewer female
participants in the DLB group (15.8%) compared with those
in CU (49.7%, p = 0.01) and AD (45.4%, p = 0.03) groups.
Moreover, there were more APOE e4 carriers in the AD group
(72.0%) compared with those in CU (55.9%, p < 0.001) and
DLB (35.3%, p = 0.01) groups. As expected, MMSEwas lower
in AD (21.9 ± 4.5) and DLB (23.8 ± 4.6) groups compared
with those in the CU group (28.8 ± 1.3, both p < 0.005).
Among the 97 participants with AD, there were 9 participants
with an atypical AD variant (5 posterior cortical atrophy, 2
logopenic progressive aphasia, and 2 behavioral AD).

Table 1 Demographics

CU (n = 147) AD (n = 97) DLB (n = 19)

Age, y 70.2 ± 7.7a 65.6 ± 7.6b,c 69.5 ± 5.6a

Sex, female, n (%) 73 (49.7)c 44 (45.4)c 3 (15.8)a,b

Education, Verhage 6.00 (5.00–6.00) 6.00 (5.00–6.00) 5.00 (5.00–6.00)

APOE «4 status, carrier, n (%) 61 (44.9)a 67 (72.0)b,c 6 (35.3)a

Aβ status, positive, n (%) 52 (36.1)a 97 (100.0)b,c 7 (36.8)a

MMSE 28.8 ± 1.3a,c 21.9 ± 4.5b 23.8 ± 4.6b

Abbreviations: Aβ = β-amyloid; AD = Alzheimer disease; CU = cognitively unimpaired; DLB = dementia with Lewy bodies; MMSE = Mini-Mental State
Examination.
Age and MMSE are shown as mean ± SD, whereas education is shown as median (interquartile range). Education reflects the Dutch Verhage score.
Information on education wasmissing for 6 CU participants. APOE e4 status wasmissing for 11 CU participants, 4 participants with AD, and 2 participants with
DLB. Aβ status was missing for 3 CU participants.
a Significantly different from AD.
b Significantly different from CU.
c Significantly different from DLB.
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Inter-reader and Intra-reader Agreements
Across all tau-PET scans (368 scans), the inter-reader
agreement between the 2 nuclear medicine physicians for
visual read was excellent (κ = 0.95, CI 0.91–0.99). For base-
line (263 scans), 2-year follow-up (90 scans), and 4-year
follow-up (15 scans) separately, comparable Cohen kappa
coefficients were observed (baseline: κ = 0.95, CI 0.91–0.99;
2-year follow-up: κ = 0.96, CI 0.89–1.0; and 4-year follow-up:
κ = 1.00, CI 1.0–1.0). There was disagreement between
readers in only 8 scans (2.2%; 6 baseline and two 2-year

follow-up scans), for which consensus reads were obtained for
subsequent analyses. The 8 scans with between-reader dis-
agreement belonged to 4 CU participants, 2 participants with
AD, and 1 participant with DLB, of which 1 participant with
AD had between-reader disagreement on both baseline and
2-year follow-up (consensus reads were obtained in-
dependently of each other). The final consensus read was in
line with the initial read of reader 1 for 2/8 scans. Intra-reader
agreement (i.e., between training set and baseline set) was
excellent (κ = 0.90, CI 0.71–0.90, for both readers).

Figure 1 Cross-sectional and Longitudinal Tau-PET Visual Read Status

(A) The prevalence of baseline tau-PET positivity stratified according to diagnostic group (CU, AD, and DLB) and Aβ status (unknown, negative, and positive) is
shown. Numbers indicate the number of participants visually read as tau-negative or tau-positive within each group. (B) Tau-PET visual read status (positive
[+] or negative [−]) for each diagnostic group at baseline, 2-year follow-up, and 4-year follow-up indicates that outcome of the visual readmethod is stable over
time. The single CU participant that converted to tau-positive at 4-year follow-up was Aβ positive. Aβ = β-amyloid; AD = Alzheimer disease; CU = cognitively
unimpaired; DLB = dementia with Lewy bodies.
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Prevalence of Tau-PET Visual Read Positivity
We examined the prevalence of tau-PET visual read positivity
stratified according to diagnosis (CU, AD, and DLB) and Aβ
status (negative/positive) (Figure 1A). Among Aβ-negative
participants, 1 participant with DLB was visually read as tau-
positive (1/12 DLB [8.3%]). None of the Aβ-negative CU
participants (0/92 [0%]) were visually read as tau-positive.
Among Aβ-positive participants, 13 CU participants (13/52
[25.0%]), 85 participants with AD (85/97 [87.6%]), and 3
participants with DLB (3/7 [42.9%]) were visually read as
tau-positive. There were 3 CU participants with unknown Aβ
status, who were all tau-negative. Among the 9 participants
with an atypical AD variant, all except 1 participant with
logopenic progressive aphasia were tau-positive.

We next examined stability in tau-PET visual read status over
time for the subset with 2-year follow-up (n = 90) and 4-year
follow-up (n = 15) available. For all participants, tau-PET
visual read at 2-year follow-up was identical to tau-PET visual

read at baseline. At 4-year follow-up, there was 1 Aβ-positive
CU participant that changed from tau-negative to tau-positive
(Figure 1B).

Comparing Tau-PET Visual Read With
Tau-PET SUVr
We next compared tau-PET visual read with a semi-
quantitative measure of tau tracer binding (SUVr). Four scans
(4/263 [1.5%], n = 3 tau-positive AD and n = 1 tau-negative
DLB) did not meet scan quality criteria for SUVr due to
severe motion during the scan. Reported in the text are results
for temporal meta-ROI SUVr, whereas eFigure 1 (links.lww.
com/WNL/D108) shows results for temporoparietal ROI
SUVr.

Compared with visual read tau-negative participants of the
same diagnostic group, temporal meta-ROI SUVr was higher
in visual read tau-positive CU participants (p < 0.001), par-
ticipants with AD (p < 0.001), and participants with DLB

Figure 2 Comparing Tau-PET Visual Read With Tau-PET SUVr

(A) Tau-PET SUVr in the temporal meta-ROI is plotted, stratified by diagnostic group (CU, AD, and DLB) and tau-PET visual read status (negative and positive).
The short dashed line represents the SUVr cutoff derived from a GMMwith the 2 Gaussian distributions plotted on the right. The long dashed line represents
the SUVr cutoff defined as 2 SDs above themean of Aβ negative CU participants. The gray zone represents visual read positive and visual read negative scans
with overlapping SUVr. (B) The confidence of the 2 readers (ranging from 1 to 5) is shown for scans below the gray zone, within the gray zone, and above the
gray zone. (C) The number of scans with concordant or discordant VR and SUVr status (based both GMM andmean + [2 × SD]) is shown. Aβ = β-amyloid; AD =
Alzheimer disease; CU = cognitively unimpaired; DLB = dementia with Lewy bodies; GMM = Gaussian mixture model; ROI = region of interest; SUVr =
standardized uptake value ratio; VR = visual read.
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(p = 0.03). However, there was also overlap in temporal meta-
ROI SUVr between visual read tau-negative and visual read
tau-positive participants, as highlighted in gray in Figure 2A. A
total of 81 scans (81/259 [31.3%]) fell within this overlapping
“gray zone” (SUVr 1.19–1.59). The 2 readers showed sig-
nificantly lower confidence scores for scans within the gray
zone compared with scans below (p < 0.001 for both readers)
or above the gray zone (p < 0.001 for both readers)
(Figure 2B). Of 8 scans with initial between-reader dis-
agreement, 6 scans had SUVr values falling within the gray
zone and 2 scans had SUVr values slightly below the gray zone
(SUVr 1.12 and 1.17).

To define tau-PET status based on temporal meta-ROI SUVr,
we identified a threshold of 1.41 SUVr derived from a GMM
with 2 components (short dashed line in Figure 2A) and a
threshold of 1.28 SUVr derived from the mean + [2 × SD] of
Aβ-negative CU participants (long dashed line in Figure 2A).
When comparing visual read tau status with SUVr tau status
(taking both SUVr thresholds into account), most of the scans
were concordant on tau status (234 scans concordant on all 3
tau status measures [90.4%]) (Figure 2C). Discordant visual
read tau-negative SUVr tau-positive scans were observed
more often when using the mean + [2 × SD] threshold
(9 scans) compared with when using the GMM threshold
(2 scans). To the contrary, discordant visual read tau-positive
SUVr tau-negative scans were observed more often when
using the GMM threshold (16 scans) compared with when
using the mean + [2 × SD] threshold (6 scans). Discordance
was especially noticeable in the DLB group, where visual read
tau-positive participants with DLB showed generally low
SUVr values.

In Figure 3, we highlighted 4 representative scans with con-
cordant or discordant tau status. The discordant participant
with DLB (visual read tau-positive, SUVr tau-negative)
showed tracer uptake in a relatively small region, potentially
resulting in a low SUVr. The discordant participant with AD
(visual read tau-negative, SUVr tau-positive) showed tracer
uptake predominantly in the medial temporal lobe, which
does not contribute to a positive visual read.

Results for temporoparietal SUVr (eFigure 1, links.lww.com/
WNL/D108) were similar, but showed a slightly lower con-
cordance between visual read and SUVr status (224 scans
concordant on all 3 tau status measures [86.5%]).

Demographic Factors Associated With Tau-PET
Visual Read Status
We next examined associations of age, sex, and APOE e4 with
tau-PET visual read in CU participants and those with AD
(eTable 1, links.lww.com/WNL/D109). Due to the low
number of tau-positive cases with DLB, these analyses could
not be performed for DLB. In CU participants, APOE e4
carriership was associated with a higher odds for tau positivity
(odds ratio [OR] 4.15, CI 1.17–19.41, p = 0.04), but this
effect disappeared when restricting the analysis to Aβ-positive
CU participants (OR 1.56, CI 0.39–7.94, p = 0.55). In AD,
both younger age (OR 0.82, CI 0.72–0.92, p = 0.001) and
female sex (OR 11.26, CI 2.05–210.40, p = 0.02) were in-
dividually associated with a higher odds for tau positivity.
When including age and sex in the same model, younger age
remained associated with a higher odds for tau positivity (OR
0.84, CI 0.73–0.93, p = 0.004), and a trend was observed for
female sex (OR 8.44, CI 1.41–162.83, p = 0.052). In Figure 4,

Figure 3 Example [18F]Flortaucipir PET Scans for Visual Read

Shown are [18F]flortaucipir PET scans
of 4 participants. (A) A CU participant
defined as tau-negative on both visual
read and SUVr. (B) A participant with
DLB defined as visual read tau-posi-
tive, but SUVr negative. Increased
tracer uptake was observed in only a
small region, potentially resulting in
low SUVr. (C) A participant with AD
defined as visual read negative, but
SUVr positive. Increase tracer uptake
was observed isolated to the medial
temporal lobe, which does not con-
tribute to a positive tau-PET visual
read. (D) A participant with AD defined
as tau-positive on both visual read and
SUVr. AD = Alzheimer disease; CU =
cognitively unimpaired; DLB = de-
mentia with Lewy bodies; SUVr =
standardized uptake value ratio.
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we modeled the estimated probabilities of tau-PET visual read
positivity according to age, showing a strong negative association
between age and tau positivity in AD and a trend toward a
positive association between age and tau positivity in CU.

AssociationWith Prospective CognitiveDecline
Finally, we tested the association of tau-PET visual read status
with prospective longitudinal trajectories of cognitive decline

in CU participants and those with AD. These analyses could
not be performed in participants with DLB due to the low
number of tau-positive cases with DLB.

A positive tau-PET visual read was associated with worse
cross-sectional MMSE in CU participants (β = −0.85, CI
−1.35 to −0.35, p = 0.001), but no significant cross-sectional
association was observed in those with AD (β = −0.48, CI

Figure 5 Association of Tau-PET Visual Read and Tau-PET SUVr With Prospective MMSE

Spaghetti plots of longitudinal MMSE are shown. Association of tau-PET visual read status with longitudinal performance on the MMSE is shown for (A) CU
participants and (B) participantswith AD, with slopes from linearmixedmodels superimposed on the graphs. In (C) the association of temporalmeta-ROI, tau-
PET SUVr with longitudinal performance on theMMSE in visual read tau-positive participants with AD is shown. For visualization purposes, slopes from linear
mixed models with SUVr in tertiles are superimposed on the graph. AD = Alzheimer disease; CU = cognitively unimpaired; MMSE = Mini-Mental State
Examination; ROI = region of interest; SUVr = standardized uptake value ratio.

Figure 4 Estimated Probabilities of Tau-PET Visual Read Positivity According to Age

Plotted are the predicted probabilities
of tau-PET visual read positivity accord-
ing to age obtained from a logistic re-
gression between tau-PET visual read
(outcome) and age (predictor). We addi-
tionally superimposed individual data
points to better visualize the distribution
of tau-negative and tau-positive cases
according to age. A trend toward a pos-
itive association between age and prob-
ability of tau-PETpositivitywas observed
in CU participants (A), whereas a strong
negative association between age and
probability of tau-PET positivity was
observed in participants with AD (B).
AD = Alzheimer disease; CU = cogni-
tively unimpaired.
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−1.05 to 0.08, p = 0.10). Over time, a positive tau-PET visual
read was associated with a steeper decline in MMSE in both
CU participants (β = −0.52, CI −0.74 to −0.30, p < 0.001) and
those with AD (β = −0.30, CI −0.58 to −0.02, p = 0.04)
(Figure 5, A and B). For sensitivity analyses, we restricted
analyses in the CU group to CU Aβ-positive participants and
observed a trend-level association between a positive tau-PET
visual read with worse cross-sectional MMSE (β = −0.55, CI
−1.09 to −0.01, p = 0.06) and a significant association with
steeper decline in MMSE (β = −0.40, CI −0.64 to −0.16, p =
0.002).

Last, we examined whether semiquantification (temporal
meta-ROI SUVr) could provide prognostic information
within visual read tau-positive participants with AD. Within
visual read tau-positive participants with AD, higher temporal
meta-ROI SUVr was associated with worse cross-sectional
performance on theMMSE (β = −0.29, CI −0.50 to −0.09, p =
0.008) and worse prospective decline on the MMSE (β =
−0.14, CI −0.20 to −0.08, p < 0.001) (Figure 5C).

Classification of Evidence
This study provides Class II evidence that [18F]flortaucipir
visual read accurately distinguishes patients with low tau-
tracer binding from those with high tau-tracer binding and is
associated with amyloid positivity and cognitive decline.

Discussion
This study aimed to evaluate the performance of the US
FDA–approved [18F]flortaucipir PET visual read method.
Our results showed that the method had excellent inter-reader
and intra-reader agreements, corresponded strongly with a
semiquantitative approach, and was stable over time. Fur-
thermore, a positive tau-PET visual read status was almost
exclusively observed in Aβ-positive participants and was as-
sociated with prospective decline on the MMSE. Our results
indicate that the visual read method is reliable and robust and
that outcome of this method shows expected associations
with clinically relevant variables, supporting the application of
this method in clinical practice.

First, for clinical implementation, it is important that the
method is reliable and accurate. A recent study validated the
method to accurately detect postmortem neurofibrillary tan-
gle pathology because positive visual reads were typically
observed in postmortem Braak stage IV or higher.13 We add
to this by showing reliability of the method with several
findings. We observed a strong degree of agreement between
2 independent readers, with agreement observed in 97.8% of
scans. Moreover, tau status based on visual read corresponded
strongly to tau status based on a semiquantitative approach
(SUVr) with concordance in tau status observed in 90.4% of
scans. In addition, none of the patients with AD with available
follow-up tau-PET changed in tau-PET visual read status over
2-year follow-up, indicating that outcome of the method is

stable over time in clinically impaired patients. Altogether, this
indicates that the visual read method accurately detects tau
pathology and is reliable for clinical implementation.

Second, for clinical implementation, it is important to un-
derstand which clinically relevant factors are associated with
tau-PET visual read status. Previous studies suggested that
cortical Aβ is required for tau to spread beyond Braak stage
IV,35 resulting in the expectation that a positive tau-PET vi-
sual read will be accompanied by the presence of neocortical
Aβ. In line with this expectation, none of the Aβ-negative CU
participants were visually read as tau-positive. However, there
was 1 Aβ-negative DLB participant visually read as tau-
positive. Tau positivity in Aβ-negative patients with DLB was
also previously observed,4 and postmortem studies are
needed to establish whether the tracer is truly binding to AD-
type tau in these cases. As expected, tau positivity among the
Aβ-positive groups was highest in AD, with 87.6% of patients
with AD being visually read as tau-positive. Notably, 12.4% of
patients with AD were thus tau-negative. In AD, we observed
a strong decrease in prevalence of tau positivity with older age,
which has also been previously reported (with comparable
effect sizes) using quantitative thresholds.36,37 Potential ex-
planations could be that with older age, there may be addi-
tional development of copathologies or less resilience to tau,
and therefore a lower tau-threshold may be needed to result in
cognitive impairment. For implementation of tau-PET visual
reads in clinical practice, it will be important to further
characterize these tau-negative patients with AD.

Because tau-PET is clinically expected to show strong di-
agnostic performance at the dementia stage of AD, it is im-
portant to note that in our study, a substantial proportion of
Aβ-positive participants with DLB (42.9%) were visual read
tau-positive. Postmortem studies indicated that approxi-
mately 50% of patients with DLB also have Aβ and tau pa-
thology.15 Of interest, previous tau-PET studies in DLB using
quantitative PET measures have generally shown minimal
tracer uptake in patients with DLB.38,39 In this study, we also
observed that SUVr of visual read tau-positive patients with
DLB was low and indistinguishable from SUVr of visual read
tau-negative patients with DLB. A potential explanation could
be that patients with DLB have relatively focal and low
amounts of tau, which is detectable by visual read, but this
signal may be attenuated when assessed quantitatively within
a larger region of interest. Future studies may look into po-
tential differences in spatial patterns of tau-positive DLB and
tau-positive AD to examine whether spatial information may
help in the differentiation.

To compare tau-PET visual read status with tau-PET SUVr
status, we used 2 threshold approaches because there is no
consensus yet on the optimal threshold for defining SUVr
positivity. For both approaches, a high percentage of con-
cordance with tau-PET visual read was observed. However,
differences between the SUVr approaches in the composition
of concordant and discordant groups were also observed. This
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indicates potential difficulty when defining tau positivity
based on quantification. In addition, our results showed that
there was a certain amount of overlap in tau-PET SUVr (the
“gray zone”) between visual read negative and visual read
positive scans. Overlap in tau-PET SUVr may not be un-
expected because tau-PET binding tends to have a more
continuous (albeit skewed) distribution, which is in contrast
to, for example, amyloid-PET, which tends to have a more
bimodal distribution. Therefore, a larger “gray zone” may be
expected for tau-PET than for amyloid-PET. Moreover, 6 of 8
scans with initial between-reader disagreement had SUVr
values within this gray zone, and the readers’ certainty was
lower for scans in this gray zone. It would be of interest to
examine whether providing tau-PET SUVr to the readers
could result in higher confidence scores for visual assessment
and thus whether SUVr could aid in the diagnostic process.

Tau-PET is expected to provide not only diagnostic but also
accurate prognostic information in the clinic. Previous studies
have indicated the utility of tau-PET as a prognostic
marker,9,10,14 and we add to this by showing that tau positivity
assessed by visual read is also associated with prospective
cognitive decline. This is of clinical relevance, given that
biomarkers that are currently used clinically (e.g., Aβ PET)
show weaker associations with cognitive decline and brain
atrophy, especially at the dementia stage.9,10 However, also
within tau-positive patients with AD, large variation in cog-
nition exists. Our results showed that within visual read tau-
positive patients with AD, tau-PET SUVr was associated with
prospective cognitive decline. This indicates that SUVr has
potential to provide prognostic information beyond visual
read, which is of interest to investigate further.

Although the visual read method is not approved for use in
cognitively normal individuals, we also examined this method
in a relatively large CU sample. Among Aβ-positive CU par-
ticipants, 25.0% was visually read as tau-positive. This is
higher compared with what has been reported using semi-
quantitative thresholds, which showed approximately
5%–10% tau positivity in Aβ-positive individuals.4,5 A po-
tential explanation could be that our CU group partly con-
sisted of individuals with SCD, which has been associated with
increased risk of dementia.40 Moreover, it must be noted that
the cohorts from which CU individuals were included were
enriched for Aβ positivity.41 Over 2-year follow-up, none of
the CU tau-negative participants (n = 46, of which 13 were Aβ
positive) converted to tau-positive. There was 1 CU tau-
negative (Aβ-positive) participant (of n = 15, of which 2 were
Aβ-positive) who converted to tau-positive at 4-year follow-
up. This may indicate a limited sensitivity of the visual read
method to detect the earliest changes in tau pathology.13

Previous studies have proposed similar, though not iden-
tical, visual read schemes which (in contrast to the US
FDA–approved visual read method) also include isolated
medial temporal lobe binding.42-45 All methods seem
to correspond well with quantitative measures of tracer
binding. Head-to-head comparisons are needed to examine

differences in sensitivity and specificity between the visual
read schemes.

Strengths include the relatively large sample size, longitudinal
data, and the use of both visual read and quantification. This
study also has limitations. Our DLB cohort was relatively
small and did not have follow-up, and we did not include other
non-AD dementias, limiting the ability to test diagnostic ac-
curacies. In addition, our cohort consisted of few atypical
cases with AD. Future studies with more cases of non-AD
dementia and atypical cases with AD are of interest. Fur-
thermore, all clinically impaired participants were recruited
from a tertiary memory clinic, which may limit generalizability
to the general population. In addition, participants come from
selected research populations, which may limit generalizabil-
ity to daily practice. Future studies are encouraged to evaluate
tau-PET visual reads in large, unselected cohorts, as has been
done with amyloid-PET.2 In addition, less than 50% of patients
with AD were female, which may be lower than the general
population with clinical AD and should be taken into account
when interpreting the data. Furthermore, we and others ob-
served that some patients with AD are tau-negative.4 However,
we were not able to validate whether these individuals were
devoid of tau using postmortem data. Examining postmortem
data of tau-negative patients with AD is important to confirm the
absence of tau pathology in these cases. Finally, the inter-reader
and intra-reader agreement in this study have to be cautiously
interpreted because this study included highly specialized read-
ers, and therefore the reliability metrics may not generalize to the
broader community of nuclear medicine physicians. Further-
more, the intra-reader agreement may contain a learning effect.

The excellent inter-reader agreement, strong correspondence
with a semiquantitative approach, and longitudinal stability
indicate that the US FDA–approved visual read method is
reliable and robust, supporting its clinical application. Fur-
thermore, tau-PET visual read was associated with pro-
spective cognitive decline, highlighting its additional
prognostic potential.
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