43 research outputs found

    Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice

    Get PDF
    National Science Foundation of China [30770490]; 973 Program of China [2009CB941601]; Science Planning Program of Fujian Province [2009J1010]; Natural Science Foundation of Fujian Province [2009J01180]; Fujian Provincial Department of Science and TechnoloThe aim of the study was to investigate the effects of genetic deficiency of aldose reductase in mice on the development of key endpoints of diabetic nephropathy. A line of Ar (also known as Akr1b3)-knockout (KO) mice, a line of Ar-bitransgenic mice and control C57BL/6 mice were used in the study. The KO and bitransgenic mice were deficient for Ar in the renal glomeruli and all other tissues, with the exception of, in the bitransgenic mice, a human AR cDNA knockin-transgene that directed collecting-tubule epithelial-cell-specific AR expression. Diabetes was induced in 8-week-old male mice with streptozotocin. Mice were further maintained for 17 weeks then killed. A number of serum and urinary variables were determined for these 25-week-old mice. Periodic acid-Schiff staining, western blots, immunohistochemistry and protein kinase C (PKC) activity assays were performed for histological analyses, and to determine the levels of collagen IV and TGF-beta 1 and PKC activities in renal cortical tissues. Diabetes-induced extracellular matrix accumulation and collagen IV overproduction were completely prevented in diabetic Ar-KO and bitransgenic mice. Ar deficiency also completely or partially prevented diabetes-induced activation of renal cortical PKC, TGF-beta 1 and glomerular hypertrophy. Loss of Ar results in a 43% reduction in urine albumin excretion in the diabetic Ar-KO mice and a 48% reduction in the diabetic bitransgenic mice (p < 0.01). Genetic deficiency of Ar significantly ameliorated development of key endpoints linked with early diabetic nephropathy in vivo. Robust and specific inhibition of aldose reductase might be an effective strategy for the prevention and treatment of diabetic nephropathy

    Mapping H4K20me3 onto the chromatin landscape of senescent cells indicates a function in control of cell senescence and tumor suppression through preservation of genetic and epigenetic stability

    Get PDF
    Background: Histone modification H4K20me3 and its methyltransferase SUV420H2 have been implicated in suppression of tumorigenesis. The underlying mechanism is unclear, although H4K20me3 abundance increases during cellular senescence, a stable proliferation arrest and tumor suppressor process, triggered by diverse molecular cues, including activated oncogenes. Here, we investigate the function of H4K20me3 in senescence and tumor suppression. Results: Using immunofluorescence and ChIP-seq we determine the distribution of H4K20me3 in proliferating and senescent human cells. Altered H4K20me3 in senescence is coupled to H4K16ac and DNA methylation changes in senescence. In senescent cells, H4K20me3 is especially enriched at DNA sequences contained within specialized domains of senescence-associated heterochromatin foci (SAHF), as well as specific families of non-genic and genic repeats. Altered H4K20me3 does not correlate strongly with changes in gene expression between proliferating and senescent cells; however, in senescent cells, but not proliferating cells, H4K20me3 enrichment at gene bodies correlates inversely with gene expression, reflecting de novo accumulation of H4K20me3 at repressed genes in senescent cells, including at genes also repressed in proliferating cells. Although elevated SUV420H2 upregulates H4K20me3, this does not accelerate senescence of primary human cells. However, elevated SUV420H2/H4K20me3 reinforces oncogene-induced senescence-associated proliferation arrest and slows tumorigenesis in vivo. Conclusions: These results corroborate a role for chromatin in underpinning the senescence phenotype but do not support a major role for H4K20me3 in initiation of senescence. Rather, we speculate that H4K20me3 plays a role in heterochromatinization and stabilization of the epigenome and genome of pre-malignant, oncogene-expressing senescent cells, thereby suppressing epigenetic and genetic instability and contributing to long-term senescence-mediated tumor suppression

    Conditionally replicating adenoviruses expressing short hairpin RNAs silence the expression of a target gene in cancer cells.

    No full text
    RNA interference (RNAi) is a posttranscriptional silencing mechanism triggered by double-stranded RNA that was recently shown to function in mammalian cells. Expression of cancer-associated genes was knocked down by expressing short hairpin RNAs (shRNAs) in cancer cells. By virtue of its excellent target specificity, RNAi may be used as a new therapeutic modality for cancer. The success of this approach will largely depend on efficient delivery of shRNAs to tumor cells. Tumor-selective replication competent viruses are especially suited to efficiently deliver anticancer genes to tumors. In addition, their intrinsic capacity to kill cancer cells makes these viruses promising anticancer agents per se. In this study, conditionally replicating adenoviruses were constructed encoding shRNAs targeted against firefly luciferase. These replicating viruses were shown to specifically silence the expression of the target gene in human cancer cells down to 30% relative to control virus. This finding offers the promise of using RNAi in the context of cancer gene therapy with oncolytic viruses

    Aldose Reductase Protects Against Early Atherosclerotic Lesion Formation In Apolipoprotein E-null Mice

    No full text
    RATIONALE: Atherosclerotic lesion formation is associated with the accumulation of oxidized lipids. Products of lipid oxidation, particularly aldehydes, stimulate cytokine production and enhance monocyte adhesion; however, their contribution to atherosclerotic lesion formation remains unclear. OBJECTIVE: To test the hypothesis that inhibition of aldehyde removal by aldose reductase (AR), which metabolizes both free and phospholipid aldehydes, exacerbates atherosclerotic lesion formation. METHODS AND RESULTS: In atherosclerotic lesions of apolipoprotein (apo)E-null mice, AR protein was located in macrophage-rich regions and its abundance increased with lesion progression. Treatment of apoE-null mice with AR inhibitors sorbinil or tolrestat increased early lesion formation but did not affect the formation of advanced lesions. Early lesions of AR(-/-)/apoE(-/-) mice maintained on high-fat diet were significantly larger when compared with age-matched AR(+/+)/apoE(-/-) mice. The increase in lesion area attributable to deletion of the AR gene was seen in both male and female mice. Pharmacological inhibition or genetic ablation of AR also increased the lesion formation in male mice made diabetic by streptozotocin treatment. Lesions in AR(-/-)/apoE(-/-) mice exhibited increased collagen and macrophage content and a decrease in smooth muscle cells. AR(-/-)/apoE(-/-) mice displayed a greater accumulation of the AR substrate 4-hydroxy trans-2-nonenal (HNE) in the plasma and protein-HNE adducts in arterial lesions than AR(+/+)/apoE(-/-) mice. CONCLUSIONS: These observations indicate that AR is upregulated in atherosclerotic lesions and it protects against early stages of atherogenesis by removing toxic aldehydes generated in oxidized lipids.link_to_OA_fulltex

    Biotransformation of vanillin into vanillyl alcohol by a novel strain of Cystobasidium laryngis isolated from decaying wood

    No full text
    Vanillin is an aromatic aldehyde found as a component of lignocellulosic material, and in the cured pods of orchidaceae plants. Like other phenolic substances, vanillin has antimicrobial activity and can be extracted from lignin either by a thermo-chemical process or through microbial degradation. Vanillin, can serve as a model monomer in biodegradation studies of lignin. In the present study, a yeast isolated from decaying wood on the Faroe Islands, was identified as Cystobasidium laryngis strain FMYD002, based on internal transcribed spacer sequence analysis. It demonstrated the ability to convert vanillin to vanillyl alcohol, as detected by ultra-high performance liquid chromatography-quadrupole-time-of-flight. Structural analysis of vanillyl alcohol was carried out by using gas chromatography-mass spectrometry and H-1 NMR spectroscopy, and further verified by synthesis. The reduction of vanillin to vanillyl alcohol has been documented for only a few species of fungi. However, to our knowledge, this biotransformation has not yet been reported for basidiomycetous yeast species, nor for any representative of the subphylum Pucciniomycotina. The biotransformation capability of the present strain might prove useful in the industrial utilisation of lignocellulosic residues
    corecore