269 research outputs found

    Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors

    Get PDF
    After smoke from burning biomass is emitted into the atmosphere, chemical and physical processes change the composition and amount of organic aerosol present in the aged, diluted plume. During the fourth Fire Lab at Missoula Experiment, we performed smog-chamber experiments to investigate formation of secondary organic aerosol (SOA) and multiphase oxidation of primary organic aerosol (POA). We simulated atmospheric aging of diluted smoke from a variety of biomass fuels while measuring particle composition using high-resolution aerosol mass spectrometry. We quantified SOA formation using a tracer ion for low-volatility POA as a reference standard (akin to a naturally occurring internal standard). These smoke aging experiments revealed variable organic aerosol (OA) enhancements, even for smoke from similar fuels and aging mechanisms. This variable OA enhancement correlated well with measured differences in the amounts of emitted volatile organic compounds (VOCs) that could subsequently be oxidized to form SOA. For some aging experiments, we were able to predict the SOA production to within a factor of 2 using a fuel-specific VOC emission inventory that was scaled by burn-specific toluene measurements. For fires of coniferous fuels that were dominated by needle burning, volatile biogenic compounds were the dominant precursor class. For wiregrass fires, furans were the dominant SOA precursors. We used a POA tracer ion to calculate the amount of mass lost due to gas-phase oxidation and subsequent volatilization of semivolatile POA. Less than 5% of the POA mass was lost via multiphase oxidation-driven evaporation during up to 2 hr of equivalent atmospheric oxidation

    Improved myocardial perfusion in chronic diabetic mice by the up-regulation of pLKB1 and AMPK signaling

    Get PDF
    Previous studies related impaired myocardial microcirculation in diabetes to oxidative stress and endothelial dysfunction. Thus, this study was aimed to determine the effect of up-regulating pAMPK-pAKT signaling on coronary microvascular reactivity in the isolated heart of diabetic mice. We measured coronary resistance in wild-type and streptozotocin (STZ)-treated mice, during perfusion pressure changes. Glucose, insulin, and adiponectin levels in plasma and superoxide formation, NOx levels and heme oxygenase (HO) activity in myocardial tissue were determined. In addition, the expression of HO-1, 3-nitrotyrosine, pLKB1, pAMPK, pAKT, and peNOS proteins in control and diabetic hearts were measured. Coronary response to changes in perfusion pressure diverged from control in a time-dependent manner following STZ administration. The responses observed at 28 weeks of diabetes (the maximum time examined) were mimicked by L-NAME administration to control animals and were associated with a decrease in serum adiponectin and myocardial pLKB1, pAMPK, pAKT, and pGSK-3 expression. Cobalt protoporphyrin treatment to induce HO-1 expression reversed the microvascular reactivity seen in diabetes towards that of controls. Up-regulation of HO-1 was associated with an increase in adiponectin, pLKB1, pAKT, pAMPK, pGSK-3, and peNOS levels and a decrease in myocardial superoxide and 3-nitrotyrosine levels. In the present study we describe the time course of microvascular functional changes during the development of diabetes and the existence of a unique relationship between the levels of serum adiponectin, pLKB1, pAKT, and pAMPK activation in diabetic hearts. The restoration of microvascular function suggests a new therapeutic approach to even advanced cardiac microvascular derangement in diabetes

    How the reconstruction of faunal communities in a marine protected area (Columbretes Reserve, western Mediterranean) evidence human and natural impacts on fauna

    Get PDF
    Reconstruction of marine communities in search of baseline (pristine) conditions is a crucial first step for their future restoration. A recent reconstruction (last century) of the sandy-muddy bottom fauna on the continental shelf of a marine protected area (MPA) was performed in the Columbretes Reserve, including periods after and before the Reserve declaration. The dating of sediments and identification of faunal remains (e.g., shells of benthic bivalves and gastropods and pelagic pteropods) were performed in a core (MC2) at a depth of 87 m in 2018. Radiometric data identified sediments older (below 11 cm) and younger (from the top of the core to 11 cm) than ca. 110 years. Mercury analyses validated the 210Pbxs data at 5–7 cm (1967–1989), with a significant Hg peak that coincided with a period of military activities occurring until 1982 in the Columbretes Islands. Both human and climatic variables affected benthic and pelagic communities. Among the human impacts, the cessation of trawling activity after the declaration of the MPA (1980s) influenced the most dominant benthos (bivalves and gastropods) by i) increases in their abundance and ii) changes in the feeding guilds, with a return to baseline conditions by the increase in filter feeders after trawling cessation vs a high abundance of detritus feeders occurring under high trawling activity. Human activities apparently did not affect diversity levels. In parallel, we also identified some recolonization by Octocorallia since the 1980s. Finally, the increase in the pelagic pteropod Creseis acicula since 1995 at the MC2 station probably indicates the result of warming of surface waters in recent decades. Our study based on core reconstructions provides for the first time an historical perspective of the impact of trawling on marine benthos and the positive effect of conservation measures in marine protected areas.En prens

    New particle formation in the Front Range of the Colorado Rocky Mountains

    Get PDF
    New particle formation is of interest because of its influence on the properties of aerosol population, and due to the possible contribution of newly formed particles to cloud condensation nuclei. Currently no conclusive evidence exists as to the mechanism or mechanisms of nucleation and subsequent particle growth. However, nucleation rates exhibit a clear dependence on ambient sulphuric acid concentrations and particle growth is often attributed to the condensation of organic vapours. A detailed study of new particle formation in the Front Range of the Colorado Rocky Mountains is presented here. Gas and particle measurement data for 32 days was analyzed to identify event days, possible event days, and non-event days. A detailed analysis of nucleation and growth is provided for four days on which new particle formation was clearly observed. Evidence for the role of sesquiterpenes in new particle formation is presented

    Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors

    Get PDF
    After smoke from burning biomass is emitted into the atmosphere, chemical and physical processes change the composition and amount of organic aerosol present in the aged, diluted plume. During the fourth Fire Lab at Missoula Experiment, we performed smog‐chamber experiments to investigate formation of secondary organic aerosol (SOA) and multiphase oxidation of primary organic aerosol (POA). We simulated atmospheric aging of diluted smoke from a variety of biomass fuels while measuring particle composition using high‐resolution aerosol mass spectrometry. We quantified SOA formation using a tracer ion for low‐volatility POA as a reference standard (akin to a naturally occurring internal standard). These smoke aging experiments revealed variable organic aerosol (OA) enhancements, even for smoke from similar fuels and aging mechanisms. This variable OA enhancement correlated well with measured differences in the amounts of emitted volatile organic compounds (VOCs) that could subsequently be oxidized to form SOA. For some aging experiments, we were able to predict the SOA production to within a factor of 2 using a fuel‐specific VOC emission inventory that was scaled by burn‐specific toluene measurements. For fires of coniferous fuels that were dominated by needle burning, volatile biogenic compounds were the dominant precursor class. For wiregrass fires, furans were the dominant SOA precursors. We used a POA tracer ion to calculate the amount of mass lost due to gas‐phase oxidation and subsequent volatilization of semivolatile POA. Less than 5% of the POA mass was lost via multiphase oxidation‐driven evaporation during up to 2 hr of equivalent atmospheric oxidation

    Production of Secondary Organic Aerosol During Aging of Biomass Burning Smoke From Fresh Fuels and Its Relationship to VOC Precursors

    Get PDF
    After smoke from burning biomass is emitted into the atmosphere, chemical and physical processes change the composition and amount of organic aerosol present in the aged, diluted plume. During the fourth Fire Lab at Missoula Experiment, we performed smog-chamber experiments to investigate formation of secondary organic aerosol (SOA) and multiphase oxidation of primary organic aerosol (POA). We simulated atmospheric aging of diluted smoke from a variety of biomass fuels while measuring particle composition using high-resolution aerosol mass spectrometry. We quantified SOA formation using a tracer ion for low-volatility POA as a reference standard (akin to a naturally occurring internal standard). These smoke aging experiments revealed variable organic aerosol (OA) enhancements, even for smoke from similar fuels and aging mechanisms. This variable OA enhancement correlated well with measured differences in the amounts of emitted volatile organic compounds (VOCs) that could subsequently be oxidized to form SOA. For some aging experiments, we were able to predict the SOA production to within a factor of 2 using a fuel-specific VOC emission inventory that was scaled by burn-specific toluene measurements. For fires of coniferous fuels that were dominated by needle burning, volatile biogenic compounds were the dominant precursor class. For wiregrass fires, furans were the dominant SOA precursors. We used a POA tracer ion to calculate the amount of mass lost due to gas-phase oxidation and subsequent volatilization of semivolatile POA. Less than 5% of the POA mass was lost via multiphase oxidation-driven evaporation during up to 2 hr of equivalent atmospheric oxidation

    Two dimensional SU(N)xSU(N) Chiral Models on the Lattice (II): the Green's Function

    Full text link
    Analytical and numerical methods are applied to principal chiral models on a two-dimensional lattice and their predictions are tested and compared. New techniques for the strong coupling expansion of SU(N) models are developed and applied to the evaluation of the two-point correlation function. The momentum-space lattice propagator is constructed with precision O(\beta^{10}) and an evaluation of the correlation length is obtained for several different definitions. Three-loop weak coupling contributions to the internal energy and to the lattice ÎČ\beta and Îł\gamma functions are evaluated for all N, and the effect of adopting the ``energy'' definition of temperature is computed with the same precision. Renormalization-group improved predictions for the two-point Green's function in the weak coupling ( continuum ) regime are obtained and successfully compared with Monte Carlo data. We find that strong coupling is predictive up to a point where asymptotic scaling in the energy scheme is observed. Continuum physics is insensitive to the effects of the large N phase transition occurring in the lattice model. Universality in N is already well established for N≄10N \ge 10 and the large N physics is well described by a ``hadronization'' picture.Comment: Revtex, 37 pages, 16 figures available on request by FAX or mai

    4D Reconstruction and Visualization of Cultural Heritage: Analysing our Legacy Through Time

    Get PDF
    Temporal analyses and multi-temporal 3D reconstruction are fundamental for the preservation and maintenance of all forms of Cultural Heritage (CH) and are the basis for decisions related to interventions and promotion. Introducing the fourth dimension of time into three-dimensional geometric modelling of real data allows the creation of a multi-temporal representation of a site. In this way, scholars from various disciplines (surveyors, geologists, archaeologists, architects, philologists, etc.) are provided with a new set of tools and working methods to support the study of the evolution of heritage sites, both to develop hypotheses about the past and to model likely future developments. The capacity to “see” the dynamic evolution of CH assets across different spatial scales (e.g. building, site, city or territory) compressed in diachronic model, affords the possibility to better understand the present status of CH according to its history. However, there are numerous challenges in order to carry out 4D modelling and the requisite multi-data source integration. It is necessary to identify the specifications, needs and requirements of the CH community to understand the required levels of 4D model information. In this way, it is possible to determine the optimum material and technologies to be utilised at different CH scales, as well as the data management and visualization requirements. This manuscript aims to provide a comprehensive approach for CH time-varying representations, analysis and visualization across different working scales and environments: rural landscape, urban landscape and architectural scales. Within this aim, the different available metric data sources are systemized and evaluated in terms of their suitability
    • 

    corecore