336 research outputs found

    Folded Strings Falling into a Black Hole

    Full text link
    We find all the classical solutions (minimal surfaces) of open or closed strings in {\it any} two dimensional curved spacetime. As examples we consider the SL(2,R)/R two dimensional black hole, and any 4D black hole in the Schwarzschild family, provided the motion is restricted to the time-radial components. The solutions, which describe longitudinaly oscillating folded strings (radial oscillations in 4D), must be given in lattice-like patches of the worldsheet, and a transfer operation analogous to a transfer matrix determines the future evolution. Then the swallowing of a string by a black hole is analyzed. We find several new features that are not shared by particle motions. The most surprizing effect is the tunneling of the string into the bare singularity region that lies beyond the black hole that is classically forbidden to particles.Comment: 28 pages plus 4 figures, LaTeX, USC-94/HEP-B

    Conformal Symmetry and Duality between Free Particle, H-atom and Harmonic Oscillator

    Get PDF
    We establish a duality between the free massless relativistic particle in d dimensions, the non-relativistic hydrogen atom (1/r potential) in (d-1) space dimensions, and the harmonic oscillator in (d-2) space dimensions with its mass given as the lightcone momentum of an additional dimension. The duality is in the sense that the classical action of these systems are gauge fixed forms of the same worldline gauge theory action at the classical level, and they are all described by the same unitary representation of the conformal group SO(d,2) at the quantum level. The worldline action has a gauge symmetry Sp(2) which treats canonical variables (x,p) as doublets and exists only with a target spacetime that has d spacelike dimensions and two timelike dimensions. This spacetime is constrained due to the gauge symmetry, and the various dual solutions correspond to solutions of the constraints with different topologies. For example, for the H-atom the two timelike dimensions X^{0'},X^{0} live on a circle. The model provides an example of how realistic physics can be viewed as existing in a larger covariant space that includes two timelike coordinates, and how the covariance in the larger space unifies different looking physics into a single system.Comment: Latex, 23 pages, minor improvements. In v3 a better gauge choice for u for the H-atom is made; the results are the sam

    U*(1,1) Noncommutative Gauge Theory As The Foundation of 2T-Physics in Field Theory

    Get PDF
    A very simple field theory in noncommutative phase space X^{M},P^{M} in d+2 dimensions, with a gauge symmetry based on noncommutative u*(1,1), furnishes the foundation for the field theoretic formulation of Two-Time Physics. This leads to a remarkable unification of several gauge principles in d dimensions, including Maxwell, Einstein and high spin gauge principles, packaged together into one of the simplest fundamental gauge symmetries in noncommutative quantum phase space in d+2 dimensions. A gauge invariant action is constructed and its nonlinear equations of motion are analyzed. Besides elegantly reproducing the first quantized worldline theory with all background fields, the field theory prescribes unique interactions among the gauge fields. A matrix version of the theory, with a large N limit, is also outlinedComment: 24 pages, LaTe

    Summing Over Inequivalent Maps in the String Theory Interpretation of Two Dimensional QCD

    Full text link
    Following some recent work by Gross, we consider the partition function for QCD on a two dimensional torus and study its stringiness. We present strong evidence that the free energy corresponds to a sum over branched surfaces with small handles mapped into the target space. The sum is modded out by all diffeomorphisms on the world-sheet. This leaves a sum over disconnected classes of maps. We prove that the free energy gives a consistent result for all smooth maps of the torus into the torus which cover the target space pp times, where pp is prime, and conjecture that this is true for all coverings. Each class can also contain integrations over the positions of branch points and small handles which act as ``moduli'' on the surface. We show that the free energy is consistent for any number of handles and that the first few leading terms are consistent with contributions from maps with branch points.Comment: 17 pages, 5 eps figures contained in a uuencoded file, UVA-HET-92-1

    Group averaging in the (p,q) oscillator representation of SL(2,R)

    Full text link
    We investigate refined algebraic quantisation with group averaging in a finite-dimensional constrained Hamiltonian system that provides a simplified model of general relativity. The classical theory has gauge group SL(2,R) and a distinguished o(p,q) observable algebra. The gauge group of the quantum theory is the double cover of SL(2,R), and its representation on the auxiliary Hilbert space is isomorphic to the (p,q) oscillator representation. When p>1, q>1 and p+q == 0 (mod 2), we obtain a physical Hilbert space with a nontrivial representation of the o(p,q) quantum observable algebra. For p=q=1, the system provides the first example known to us where group averaging converges to an indefinite sesquilinear form.Comment: 34 pages. LaTeX with amsfonts, amsmath, amssymb. (References added; minor typos corrected.

    Isometric Embedding of BPS Branes in Flat Spaces with Two Times

    Get PDF
    We show how non-near horizon p-brane theories can be obtained from two embedding constraints in a flat higher dimensional space with 2 time directions. In particular this includes the construction of D3 branes from a flat 12-dimensional action, and M2 and M5 branes from 13 dimensions. The worldvolume actions are determined by constant forms in the higher dimension, reduced to the usual expressions by Lagrange multipliers. The formulation affords insight in the global aspects of the spacetime geometries and makes contact with recent work on two-time physics.Comment: 29 pages, 10 figures, Latex using epsf.sty and here.sty; v2: reference added and some small correction

    Ultracold neutrons, quantum effects of gravity and the Weak Equivalence Principle

    Full text link
    We consider an extension of the recent experiment with ultracold neutrons and the quantization of its vertical motion in order to test the Weak Equivalence Principle. We show that an improvement on the energy resolution of the experiment may allow to establish a modest limit to the Weak Equivalence Principle and on the gravitational screening constant. We also discuss the influence of a possible new interaction of Nature.Comment: Revtex4, 4 pages. Discussion on the equivalence principle altered. Bound is improve

    Supersymmetric string model with 30 kappa--symmetries in an extended D=11 superspace and 30/ 32 BPS states

    Full text link
    A supersymmetric string model in the D=11 superspace maximally extended by antisymmetric tensor bosonic coordinates, Σ(52832)\Sigma^{(528|32)}, is proposed. It possesses 30 κ\kappa-symmetries and 32 target space supersymmetries. The usual preserved supersymmetry-κ\kappa-symmetry correspondence suggests that it describes the excitations of a BPS state preserving all but two supersymmetries. The model can also be formulated in any Σ(n(n+1)2n)\Sigma^{({n(n+1)\over 2}|n)} superspace, n=32 corresponding to D=11. It may also be treated as a `higher--spin generalization' of the usual Green--Schwarz superstring. Although the global symmetry of the model is a generalization of the super--Poincar\'e group, Σ(n(n+1)2n)×Sp(n){\Sigma}^{({n(n+1)\over 2}|n)}\times\supset Sp(n), it may be formulated in terms of constrained OSp(2n|1) orthosymplectic supertwistors. We work out this supertwistor realization and its Hamiltonian dynamics. We also give the supersymmetric p-brane generalization of the model. In particular, the Σ(52832)\Sigma^{(528|32)} supersymmetric membrane model describes excitations of a 30/32 BPS state, as the Σ(52832)\Sigma^{(528|32)} supersymmetric string does, while the supersymmetric 3-brane and 5-brane correspond, respectively, to 28/32 and 24/32 BPS states.Comment: 23 pages, RevTex4. V2: minor corrections in title and terminology, some references and comments adde

    Black Hole Entropy in the Chern-Simons Formulation of 2+1 Gravity

    Full text link
    We examine Carlip's derivation of the 2+1 Minkowskian black hole entropy. A simplified derivation of the boundary action -valid for any value of the level k- is given.Comment: 6 pages, RevTeX, minor changes. Old title "Some remarks on Carlip's derivation of the 2+1 black hole entropy". Version to appear in Phys. Rev.
    corecore