11,542 research outputs found

    Rumen function and digestion parameters associated with differences between sheep in methane emissions when fed chaffed lucerne hay

    Get PDF
    An indoor experiment involving 10 rumen-cannulated Romney sheep was conducted in May and June 1998 at AgResearch Grasslands, Palmerston North, New Zealand, under restricted feeding conditions. in order to test the hypothesis that animal factors, in particular rumen fractional outflow rate (FOR) and rumen volume, have an influence on the between-sheep variation in methane (CH4) emission. Sheep were fed 2-hourly on chaffed lucerne hay. Following an acclimatization period of 21 days, the experiment lasted 16 days. Energy and nitrogen (N) balances were measured on days 1-6. Cr-EDTA marker was continuously infused into the rumen from day 9 to 16, and rumen contents emptied and sampled on days 13 and 16. Particulate and fluid FOR were estimated using feed lignin and Cr-EDTA, respectively. Daily CH, production was measured by the sulphur hexafluoride tracer technique on days 2, 5, 6, 12 and 15 of the experiment. CH4 production (g/day) was positively correlated with the pool size of organic matter (OM) in the rumen (OM pool, g) (r = 0.84, P = 0.002), OM intake (OMI, g/day) (r = 0.67, P = 0.04), and the rumen fill (g. wet digesta) (r = 0.76, P = 0.01). Multiple regression analysis showed that CH4 production was best predicted (R-2 = 0.88) as a function of OM pool and the molar % of butyrate; however, OM pool alone accounted for a large proportion (R-2 = 0.71) of the variation in CH4 production. CH4 yield (% gross energy intake, % GEI) was negatively correlated with the particulate FOR (%/h) ( r= -0.75, P = 0.01) and buffering capacity of rumen fluid (mmol HCl) (r = -0.72, P = 0.02) but positively correlated with the digestibility of cellulose (r = 0.66, P = 0.04). Multiple regression analysis showed that CH, yield was best predicted as a function of particulate FOR, OMI (g/kg liveweight(0.75)) and the molar % of butyrate (R-2 = 0.88). Particulate FOR alone explained a large proportion (R-2 = 0.57) of the variation in CH4 Yield. Particulate FOR was negatively correlated with rumen fill (r = -0.69, P = 0.03) and digestibility of cellulose (r = -0.65, P = 0.04). These results suggest that sheep with lower rumen particulate FOR (i.e. longer rumen retention times) had larger rumen fills and higher fibre digestibilities and CH4 yields. If rumen particulate FOR is to be used as a tool for CH4 mitigation, the repeatability of its relationship to CH4 emission must be assessed, preferably under grazing conditions

    Persistence of differences between sheep in methane emission under generous grazing conditions

    Get PDF
    Four low and four high methane (CH4) emitters were selected from a flock of 20 Romney sheep on the basis of CH4 production rates per unit of intake, measured at grazing using the sulphur hexafluoride (SF,) tracer technique. Methane emissions from these sheep were monitored at grazing for four periods (P): October, November, January and February 1999/2000. All measurements were carried out on perennial ryegrass/white clover pasture under generous herbage allowance, and the sheep were maintained on similar pastures during non-measurement periods. The tracer technique was used for all the CH4 measurements and feed DM intake was calculated from total faecal collection and estimated DM digestibility. Data for liveweight (LW), gross energy intake (GEI) and CH4 emission were analysed using split-plot analysis of variance. In addition, a between-period rank order correlation analysis was carried out for CH4 emission data. Low CH4 emitters were heavier (P < 0.05) than the high emitters in all the periods, but they did not differ (P < 0.05) in their gross energy intakes (GEL MJ/kg LW0.75). Low and high CH4 emitters consistently maintained their initial rankings in CH4 yield (% GEI) throughout the subsequent periods and the correlation analysis of rank order for CH4 yield showed strong between-period correlation coefficients, although this was weaker in the last period. It is suggested that feeding conditions that maximize feed intake (e.g. generous allowance of good quality pasture under grazing) favour the expression and persistence of between-sheep differences in CH4 yield

    Development and Processing Improvement of Aerospace Aluminum Alloys

    Get PDF
    This final report, in multiple presentation format, describes a comprehensive multi-tasked contract study to improve the overall property response of selected aerospace alloys, explore further a newly-developed and registered alloy, and correlate the processing, metallurgical structure, and subsequent properties achieved with particular emphasis on the crystallographic orientation texture developed. Modifications to plate processing, specifically hot rolling practices, were evaluated for Al-Li alloys 2195 and 2297, for the recently registered Al-Cu-Ag alloy, 2139, and for the Al-Zn-Mg-Cu alloy, 7050. For all of the alloys evaluated, the processing modifications resulted in significant improvements in mechanical properties. Analyses also resulted in an enhanced understanding of the correlation of processing, crystallographic texture, and mechanical properties

    ImageJ2: ImageJ for the next generation of scientific image data

    Full text link
    ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. Due to these new and emerging challenges in scientific imaging, ImageJ is at a critical development crossroads. We present ImageJ2, a total redesign of ImageJ offering a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. ImageJ2 provides a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs

    Plant Secondary Compounds; Their Impact on Forage Nutritive Value and upon Animal Production

    Get PDF
    Both the anti-nutritional and beneficial effects of secondary compounds in a range of temperate and tropical forages have been reviewed. Major secondary compounds in temperate and tropical forage plants occur in the phenolic fraction and include condensed and hydrolysable tannins, phenolic monomers and lignin. Condensed tannins (CT) bind to plant protein by pH-reversible hydrogen bonding. In temperate legume forages this reduces rumen protein degradation and can increase the absorption of essential amino acids (EAA) from the small intestine, with reactivity depending on CT concentration, molecular weight and chemical structure. Low concentrations of CT in Lotus corniculatus (20-40g/kg DM) increased EAA absorption by 62% and increased wool growth (15%) and ovulation rate (25%) in grazing sheep and increased milk production in ewes and dairy cows, all without changing voluntary feed intake (VFI). High concentrations of CT in Lotus pedunculatus (80- 100 g/kg DM) depressed VFI and depressed rates of body and wool growth in grazing sheep. Sulla, containing 80-120 g CT/kg DM, was particularly effective for counteracting the effects of parasitism and for promoting high rates of body growth in parasitised lambs. CT is present in tropical species such as Leucaena and Acacia at higher concentrations (60-200 g/kg DM) than in temperate species. Action of CT reduced rumen protein degradation in sheep fed tropical forages, but as yet there is no convincing evidence that this leads to increases in EAA absorption from the small intestine or that CT increases animal production. Further research is needed in these areas with tropical forages, particularly on the relationship between CT structure and its reactivity with proteins. Increasing CT concentration did not depress rumen microbial protein synthesis in sheep fed either temperate or tropical forages, until CT concentration exceeded 130 g/kg DM. Effect of CT upon undegraded, dietary protein release in the small intestine and upon endogenous protein secretion is defined as a future research area. Flavonoids have been detected in tropical legume forages in the same concentrations as CT. They have anti-nutritional effects in terms of causing amino acid loss during their excretion as conjugates in the urine and by disturbing blood acid/base balance, leading to reduced VFI. Research currently in progress with other secondary compounds in both temperate and tropical forages is reviewed. This includes sesquiterpene lactones in chicory, acubin in plantain, isoflavones in red clover and coumarin and dihydro-coumarin in glyricidia. The nutritional and anti-nutritional effects of these compounds for both ruminants and non-ruminants is discussed
    • …
    corecore