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Abstract

Both the anti-nutritional and beneficial effects of secondary compounds in a range of
temperate and tropical forages have been reviewed.  Major secondary compounds in
temperate and tropical forage plants occur in the phenolic fraction and include condensed and
hydrolysable tannins, phenolic monomers and lignin.  Condensed tannins (CT) bind to plant
protein by pH-reversible hydrogen bonding.  In temperate legume forages this reduces rumen
protein degradation and can increase the absorption of essential amino acids (EAA) from the
small intestine, with reactivity depending on CT concentration, molecular weight and
chemical structure.  Low concentrations of CT in Lotus corniculatus (20-40g/kg DM)
increased EAA absorption by 62% and increased wool growth (15%) and ovulation rate
(25%) in grazing sheep and increased milk production in ewes and dairy cows, all without
changing voluntary feed intake (VFI).  High concentrations of CT in Lotus pedunculatus (80-
100 g/kg DM) depressed VFI and depressed rates of body and wool growth in grazing sheep.
Sulla, containing 80-120 g CT/kg DM, was particularly effective for counteracting the effects
of parasitism and for promoting high rates of body growth in parasitised lambs.  CT is present
in tropical species such as Leucaena and Acacia at higher concentrations (60-200 g/kg DM)
than in temperate species.  Action of CT reduced rumen protein degradation in sheep fed
tropical forages, but as yet there is no convincing evidence that this leads to increases in EAA
absorption from the small intestine or that CT increases animal production.  Further research
is needed in these areas with tropical forages, particularly on the relationship between CT
structure and its reactivity with proteins.  Increasing CT concentration did not depress rumen
microbial protein synthesis in sheep fed either temperate or tropical forages, until CT
concentration exceeded 130 g/kg DM.  Effect of CT upon undegraded, dietary protein release
in the small intestine and upon endogenous protein secretion is defined as a future research
area.

Flavonoids have been detected in tropical legume forages in the same concentrations
as CT.  They have anti-nutritional effects in terms of causing amino acid loss during their
excretion as conjugates in the urine and by disturbing blood acid/base balance, leading to
reduced VFI.

Research currently in progress with other secondary compounds in both temperate and
tropical forages is reviewed.  This includes sesquiterpene lactones in chicory, acubin in
plantain, isoflavones in red clover and coumarin and dihydro-coumarin in glyricidia.  The
nutritional and anti-nutritional effects of these compounds for both ruminants and non-
ruminants is discussed.

Introduction



Secondary compounds can exert both anti-nutritional and nutritionally beneficial
effects upon forage feeding value.  Recent advances in the field of secondary compounds that
occur in both temperate and tropical forages.  The major part of the review will concern
phenolic compounds, including condensed tannins (CT) and monomeric phenolics.  Their
reactivity will be reviewed in relation to structure, followed by their effects upon voluntary
food intake (VFI), digestive processes, animal production (including body and wool growth,
lactation and reproduction) and animal health (bloat and parasite control).  A feature of the
paper will be to compare and contrast the effects produced by secondary compounds in
animals grazing temperate and tropical forages.

The final part of the review will summarise research that is in progress involving other
secondary compounds in both temperate and tropical forages.  The objective here is to update
readers on “research in progress” in these areas; firm conclusions are available in some cases
but not in others at this stage.

Plant Phenolic Compounds

Condensed tannins (CT) occur in a number of temperate legumes such as Lotus
corniculatus, Lotus pedunculatus and sulla (Hedysarum coronarium) and their effects upon
forage nutritive value will be reviewed in this paper.  Other temperate forages also contain
low concentrations of CT (Table 1).

Condensed tannins

Temperate forage

Voluntary feed intake

High CT concentrations in Lotus pedunculatus (63 and 106 g/kg DM) substantially
depressed VFI in sheep (-27%), in line with plant CT production being a defence against
consumption by herbivores (Barry and Duncan 1984).  Lower depressions in VFI (-12%)
were produced by 55 g CT/kg DM in Lotus pedunculatus (Waghorn et al., 1994).  However,
medium CT concentrations in sulla (45 g/kg DM) and in Lotus corniculatus (34 and 44 g/kg
DM) had no effect upon VFI (Terrill et al., 1992a; Wang et al., 1996a,b).

Digestive processes

When ruminants are fed fresh forages there is often an extensive fermentation of
dietary protein to peptides, amino acids and ammonia in the rumen.  Much of this nitrogenous
substrate is reincorporated into microbial protein.  However, the rapid release of ammonia
often exceeds its incorporation into microbial protein, resulting in 20-35% of this N being lost
as ammonia absorbed from the rumen (MacRae and Ulyatt 1974).  A number of studies have
shown that a low concentration of CT in the diet can increase the flow of non-ammonia-
nitrogen (NAN) to the intestine, relative to N intake (for review see Barry and McNabb 1999).
This results because CT can reduce protein (McNabb et al. 1996) and N (Waghorn et al.
1987a) degradation in the rumen.

When duodenal (abomasal) NAN flux per unit N eaten is plotted against CT
concentration using data from a range of experiments where sheep were fed lotus species (Fig.
1), this clearly shows that total NAN flux increases with increasing CT concentration.  This is
in contrast to microbial N flux at the duodenum (abomasum) which shows no change as CT
concentration increases (Fig. 1).



Waghorn et al. (1987b) reported that the CT in L. corniculatus (22 g kg DM-1) fed to
sheep increased abomasal flux of essential amino acids (EAA) by 50%.  This change was
associated with increased (63%) apparent absorption of EAA from the small intestine
(Waghorn et al., 1987b).  Whilst the abomasal flux of nonessential amino acids (NEAA) was
also increased (14%) by the CT, a significant reduction (20%) in the digestibility of NEAA in
the small intestine resulted in the apparent absorption of NEAA being similar in control and
polyethylene glycol (PEG)-supplemented sheep (Table 2).  Strong complexes are formed
between CT and the binding agents, PEG (MW 3350) and polyvinylpyrrolidone (PVP).  Both
these binding agents, and particularly PEG, have been used to study the interaction between
CT and protein (Jones and Mangan 1977; Barry and Manly 1986).  About 1.7-2.0 g of PEG/g
CT is generally required to complex all the CT such that the CT from Lotus pedunculatus is
unable to precipitate forage protein (Barry and Forss 1983).  Therefore, the effects of CT can
be deduced by comparing sheep receiving PEG, either orally or intraruminally (CT inactive)
with sheep not receiving PEG supplementation (CT active).

The ratio of EAA:NEAA absorbed from the small intestine in the study of Waghorn et
al. (1987b) was 0.87 for PEG-supplemented sheep.  This same ratio in L. corniculatus and
rumen bacteria was 1.14 and 1.08, respectively.  Therefore, the value of 1.57 for the ratio of
EAA:NEAA absorbed from the small intestine of sheep not receiving PEG could only arise
from selective absorption of EAA.  We have yet to fully understand how CT affects amino
acid absorption from the small intestine.

Whilst concentration in the diet is clearly important, other factors like chemical
structure and source of the CT are equally important (for review, see Barry & McNabb,
1999).  For example the CT in L. pedunculatus (55 g kg DM-1) also increased (by 15%) the
flux of EAA through the abomasum (Waghorn et al., 1994).  However, this CT reduced the
apparent digestibility of EAA in the small intestine by 13 percentage units.  The net effect of
these changes in amino acid digestion was that apparent absorption of EAA from the small
intestine was unaffected by this CT (Table 2).  In that experiment, the CT in L. pedunculatus
also reduced N digestibility by 12 percentage units and voluntary intake by 12%.  In a similar
experiment where sheep were fed a mixed diet consisting of L. pedunculatus and ryegrass
(Lolium perenne) with a final CT concentration in the mixed diet of 18 g CT kg DM-1, N
digestibility was reduced by 13 percentage units (Waghorn & Shelton 1995).  In that
experiment the effects of CT were similar to L. pedunculatus fed as a sole diet even though
the concentration of CT in the mixed diet more closely resembled L. corniculatus.

In this example the variation in nutritional responses to the two sources of CT was not
solely mediated by the concentration of CT in the diet and it is likely that the chemical
structure of the CT was important.  The chemistry of CT is complex and a thorough
discussion of this topic is beyond the scope of this review.  However, key differences occur in
the hydroxylation of the B-ring of the constitutive flavan-3-ol units.  The stereochemistry of
the heterocyclic C-rings takes the form of 2,3-cis or 2,3-trans and these dictate how flavan-3-
ol subunits are attached relative to one another.  Either C4/C8 or C4/C6 interflavanoid
linkages link the constitutive flavan-3-ol units, and this affects the final shape of the polymer.

The number of constitutive flavan-3-ol units also varies.  These differences produce an
infinite number of chemical structures, which in turn affect the reactivity of the CT.

For example, the CT from L. corniculatus and L. pedunculatus differ considerably in
their chemical structures (Foo et al., 1996, 1997).  The CT in L. pedunculatus predominantly
consists of prodelphinidin subunits with epigallocatechin (64%) being prevalent.  In contrast



the CT from L. corniculatus is predominantly procyanidin with epicatechin (67%) dominating
this CT.  Finally, the average molecular weight (MW) of CT in L. pedunculatus is 2200,
whilst in L. corniculatus it is 1900.  In comparative experiments, CT from L. pedunculatus
were more effective at reducing the degradation of ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco) protein by rumen micro-organisms than the CT from L.
corniculatus (Aerts et al., 1999).  This suggests that the effect that CT has on protein
degradation may be responsive to these differences in chemical structure.

Body growth, wool growth and reproduction

Lambs grazing Lotus corniculatus at very high DM allowances (i.e., ad libitum
intakes) produced high rates of body and wool growth (Experiments 1 and 2; Table 2), but as
there were no responses to PEG supplementation it seems that none of these effects were
attributable to CT.  However, when DM allowance was reduced in growing lambs (initial
liveweight 22.4 kg) grazing Lotus corniculatus for four months during summer (Experiment
3), action of CT (i.e., unsupplemented sheep – PEG supplemented sheep) increased wool
growth by 12% without affecting rate of body growth or VFI (Wang et al., 1996a; Table 3).
There was no response to PEG supplementation in comparable sheep grazing lucerne,
containing only traces of CT (0.3 g/kg DM).  Action of CT in dry ewes (initial liveweight 54
kg) restricted to maintenance feeding on Lotus corniculatus for four months during summer
(Experiment 4) increased wool growth by 19% without affecting VFI or LWG (Table 3).

A review of many year’s data implicated a role for protein nutrition in the ovulation
rate of ewes (Smith 1991), and this was illustrated by an increase in ewes showing multiple
ovulations in response to abomasal infusions of lactalbumin and soy protein isolate (73% vs.
55%; Cruickshank et al., 1998).  Grazing trials were then carried out for 6 – 12 weeks, with
ewes grazing perennial ryegrass/white clover pasture and Lotus corniculatus, containing 1 and
23 g CT/kg DM (Table 3), to study if the effect of improving protein supply on ovulation rate
(OR) could be induced by CT.  Grazing on Lotus corniculatus increased OR in all three years
(Table 4), but the magnitude of the response differed between years.  Where the ewes gained
a small amount of weight during mating (Experiments 5 and 7), grazing on Lotus corniculatus
increased OR by 32 and 21%, with a large part of the response due to the action of CT.
Where the ewes lost a small amount of weight during mating (Experiment 6), grazing on
Lotus corniculatus increased OR by 14%, with none of the effect attributable to action of CT.
Averaged over all three experiments, grazing ewes on Lotus corniculatus during mating in
autumn increased wool growth by 18%, but in contrast to results obtained during summer
(Table 3) only a very small component of this was due to the action of CT.

In contrast to the increased productivity obtained from CT in Lotus corniculatus, the
action of CT in Lotus pedunculatus containing 76-90 g CT/kg DM markedly depressed rates
of both body growth and wool growth (Barry 1985) and high CT concentration in sulla (88
g/kg DM) restricted carcass gain in growing lambs (Douglas et al. 1999).  This further
illustrates the ecological role of high CT concentrations as a chemical defence.

Lactation

Feeding fresh forages imposes several limitations on both the yield and efficiency of
milk and milk protein production.  When lactating ruminants predominantly fed fresh forages



have been given abomasal infusions of protein like casein, or fed supplementary protein
protected from rumen degradation, production responses have included increased milk
production in dairy cattle (Rogers et al., 1980) and sheep (Penning et al., 1988).  This
suggests that milk production is restricted when insufficient amino acids are absorbed from
the small intestine relative to energy.  Reduced availability of amino acids is due in part, to
substantial losses of dietary protein from the rumen as a result of microbial fermentation to
ammonia (MacRae and Ulyatt 1974) and the use of absorbed amino acids in the conversion of
ammonia to urea in the liver (Lobley et al., 1995).

Studies have shown that low concentrations of CT in the diet can increase milk yield
and milk protein concentration.  Wang et al. (1996b) conducted a grazing experiment to study
the effects of CT in L. corniculatus on lactation performance of ewes rearing twin lambs.  In
that study, effects of CT were elucidated by comparing ewes orally supplemented with PEG,
with ewes that had not received PEG.  The milk yield and composition were similar for
control (CT acting) and PEG-supplemented (CT not acting) ewes at peak lactation.  However,
as the lactation progressed, control ewes experienced a slower decline in milk production.  In
mid and late lactation, control ewes were producing more milk (21%) and more milk protein
(14%) than the comparable PEG-supplemented ewes.

Woodward et al. (1999) reported that CT in L. corniculatus fed to dairy cows in late
lactation also increased milk and milk protein yield, and milk protein concentration.  In that
study, CT was responsible for 57% of the increase in the milk protein concentration because
cows fed L. corniculatus had a higher milk protein concentration (3.61%) than comparable
cows fed L. corniculatus supplemented with PEG (3.44%), ryegrass (3.31%) or ryegrass
supplemented with PEG (3.30%).  Changes in lactation performance were not a consequence
of changes in intake because CT did not affect this parameter in either study.

Animal health

Ruminants grazing forage diets are subject to a number of diseases, some of which
have a nutritional component.  Two such conditions are rumen frothy bloat in cattle and
internal parasite infections in young grazing sheep, cattle, deer and goats.

Bloat is caused by very high solubility of forage proteins leading to the development
of a stable foam in the rumen, and is very prevalent in cattle fed on legumes, especially in
spring (Mangan, 1959).  Because of their protein-precipitating properties, grazing CT-
containing legumes has long been known to eliminate bloat (Jones et al. 1973).  However, the
minimum plant CT concentration needed to make forage bloat-safe was not known; this has
recently been proposed to be 5 g CT/kg DM or greater (Li et al. 1996).
Effects of CT on parasitism can be assessed by grazing animals on legumes that contain
differing levels of CT but have similar morphology and are similar in other aspects of
chemical composition.  Anthelmintic treated (i.e., parasite free) lambs grew at similar rates
when grazing CT-containing legumes (sulla and Lotus pedunculatus) or non-CT-containing
lucerne (Table 5).  However, non-drenched (i.e., parasitised) lambs grew much better on the
CT-containing legumes, indicating that they could better tolerate the parasites.  Parasite
burdens at slaughter were similar for lambs grazing Lotus pedunculatus and sulla, but were
considerably lower for lambs grazing sulla.

Two possible mechanisms could be involved.  Firstly, improved EAA supply from the
action of the CT may counteract the protein loss caused by gut parasitism and may stimulate
the immume system, enabling the animals to better resist a parasite burden.  Secondly, the CT
may directly react with and inactivate parasite larvae during passage through the gut.  Using



in vitro studies, Molan et al. (2000a,b) have shown that CT extracted from sainfoin, sulla,
Lotus pedunculatus and Lotus corniculatus can inhibit infective gut worm larvae of sheep and
both gut worm and lungworm in farmed deer, with the effect influenced by both CT
concentration and structure.  Therefore, it seems that CT may counteract parasites by one or
both of the above mechanisms, and that the mechanism involved may differ for sulla and
Lotus pedunculatus CT.

Tropical forages

The majority of available data on tropical CT point to a negative influence, not always
on VFI but often on the availability of nitrogen, per unit of forage.  Few data are available on
the impact of tropical CT on animal performance over the longer term (months).  Available
data suggest a negative impact.  The potential for low concentrations of tropical CT to
enhance animal productivity and health over the longer term remains largely unexplored and
should be a future research priority.  In vivo studies that have incorporated the use of PEG
supplementation to determine the effect of CT, unconfounded by other plant factors, are the
focus of this section.

Voluntary feed intake

Tropical CT’s can depress intake.  Depressions may not be immediately evident in
short-term preference trials, but can emerge over the longer term.  Comprehensive preference
trials by both Kaitho et al. (1998) involving 40 “cut and carried” browse spp. (fed to sheep,
CT range 2–81 g/kg DM), and Faint et al. (1998) with 21 directly grazed leucaena accessions
(fed to cattle, CT range 0–277 g/kg DM), showed no significant negative correlation between
preference rating and CT content.  Nor was preference improved when the accessions were
sprayed with PEG (Faint et al. 1998).  However, in a related but only preliminary trial, foliar
applications of PEG to harvested leucaena improved the preference of cattle for the high CT
L. pallida (CT = 147 g/kg DM), while the preference of the already well accepted lower CT L.
leucocephala (CT = 75 g/kg DM) remained unchanged (Hannigan and McNeill 1998).
Consistent with this we have recently shown in a digestibility trial that the CT fraction in L.
pallida depresses VFI in sheep by as much as 45%.  In similar protocols, no depression was
noted for the lower CT L. leucocephala or the hybrid of the 2 species (Table 6).  CT’s in A.
aneura and A. saligna (= A. cyanophylla) have depressed the VFI of sheep in digestibility
trials, run over the course of 1-2 weeks (Degen et al. 1998, 15%, Ben Salem 1999b, 19%).
However, there are instances where intakes depressions have not been detected (Miller et al.
1997, Ben Salem 1999a), or depressions were evident but minimal (< 10%, Barahona et al.
1997, for Desmodium ovalifolium and Flemingia macrophylla).

The above data are consistent with the reasonable expectation that the higher the CT
content the greater the depression of VFI and provide a note of caution with regard to a
reliance on preference trials as a means of predicting longer term intakes of CT-rich forages.

Animal Productivity

There are few data from longer term feeding trials for VFI or animal productivity
responses.  Available data appear largely confined to low quality forages such as Acacia
aneura (Mulga) and A. saligna (= A. cyanophylla); (Table 7).  Effects on VFI appear variable,
while effects on liveweight and wool production tend to be negative.  Similarly, in grass-



based diets supplemented with Calliandra calothyrsus (30% of the diet), Palmer and
McSweeney (2000) have preliminary data for a positive response to PEG in wool production
in the order of 20-30%.   Surprisingly, no similar information is available on PEG responses
in the high quality legumes such as  Leucaena leucocephala, Gliricidia, and the Desmodiums.
We are not aware of any published data on the impact of tropical CT’s on milk production, or
measures of reproductive performance such as ovulation rate.
[Insert Table 7 near here]

Animal Health

Hypotheses relating to the potential of tropical CT’s to reduce worm burdens are being
actively pursued, although to date there have been few in vivo studies and their results are
inconclusive (Kahn and Diaz-Hernandez 2000).  Supplementing weaner sheep with Calliandra
calothyrsus for one week did not reduce naturally acquired worm burdens (Parker and Palmer
1991).  It may be that CT has to be fed over a longer period for benefits to be detected.  For
example, by supplementing lambs with quebracho CT for 10 weeks, artificially induced worm
burdens were reduced (Butter et al, 1998).  Although even then, liveweight gains remained
depressed.

No data appear to be available on the ability of tropical CTs to protect against bloat.
However, the consistent ability of CT in tropical forages to protect protein in the rumen  (see
later) indicates a protective effect against bloat is highly likely.

Nutrient utilisation

The data in Table 6 are representative of the trends seen in the wider literature for the
effect of CT on nutrient availability in vivo.  While tropical CT may not always depress VFI,
OMD, or flows of microbial N, they consistently depress the apparent whole-tract digestibility
of N (Table 6, and Pritchard et al. 1992, Carrulla 1994, Barahona 1997, Miller et al. 1997,
Norton and Ahn 1997, Ben Salem et al. 1999ab).  As CT content rises, depressions in N
digestibility lead to depressions in N retention.  The higher the CT content, the greater the
depression.

The reduction in the digestibility of N starts in the rumen.  This is evidenced by the
remarkably consistent observation that tropical CT increase the proportion of bypass protein
in the diet, and often increase the total flow of protein to the abomasum (e.g. for Leucaena
leucocephala, Table 6, Desmodium ovalifolium, Carrulla 1994 and Barahona et al. 1997).
However, evidence that this extra protein advantages the animal remains elusive.  The
important question is whether or not this extra protein is available for absorption across the
small intestine.  Few have attempted to measure this for tropical CT.  Barahona et al. (1997)
have, and they detected no beneficial effect.  To date there is no clear evidence that tropical
CT can improve the delivery of metabolisable protein per unit of forage ingested.

For tropical CT, post-ruminal impacts may prove to be more important than ruminal.
In monogastrics it is well recognised that CT exacerbate the obligatory losses of endogenous
protein (see review by McNeill et al. 1998).  If the same occurs in ruminants fed CT-
containing tropical forages it may explain why improvements in post-ruminal flows of protein
may not be complemented by improvements in N retention.  Increased flows of bypass protein
may be offset by an increased loss in endogenous protein.  Such a response would be
dependent on ingested CT remaining active following passage through the rumen. Whether
the result of overprotection of feed protein or an exacerbation of endogenous loss, evidence
for postruminal activity is mounting.  Abomasal infusions of PEG induced a greater wool
growth response than did ruminal infusions, in sheep fed hay plus 30% of the diet as



Calliandra calothyrsus (Palmer and McSweeney 2000).  Komolong and McNeill
(unpublished) have shown that as the intake of a crude extract containing quebracho CT was
increased across the range 0 to 6% of DMI (actual CT levels 0, 13, 26, 38 g/kg DM in a
lucerne chaff based diet fed at 1000 gDM/lamb/day), bypass protein flows remained unaltered
whilst apparent absorption of NAN from the small intestine declined dramatically, and
linearly, from 12.6 to 7.2 g/day (P<0.05).  Further investigation is required to quantify the
extent to which the extra protein reaching the end of the small intestine is of endogenous as
compared to feed origin in response to a dietary load of CT.

Comparing and contrasting the effects of CT in temperate and tropical forages

From the information available to date, it is clear that animal responses to CT differ
between temperate and tropical forages.  Whereas increases in EAA absorption and in animal
production have been shown from the action of CT in some temperate forages (e.g., Lotus
corniculatus), no such increases have been demonstrated yet for tropical forages.  One reason
is that there are many more CT-containing tropical forages than temperate forages and less
nutritional work has been done on tropical than on temperate CT; it may be that beneficial
effects of one or more tropical CT remain to be discovered.

A further reason is that CT concentration is generally higher in tropical than in
temperate forages and that there may well be differences in molecular weight and structure
between tropical and temperate CT.  Work is needed on the structure of CT from different
tropical forages and their relationship to reactivity.  Current information with tropical CT
points to adequate protection of dietary protein from rumen digestion, but no net benefit in
protein absorption from the small intestine (as is also the case for CT in the temperate legume
Lotus pedunculatus).  Possible reasons include incomplete release of CT from protein in the
small intestine and/or increases in endogenous protein excretion, leading to increases in faecal
N excretion.  This could well be a function of CT structure.  It highlights the small intestine as
an area for nutritional investigation in ruminants fed CT-containing forages.

Whilst there may be differences between tropical and temperate CT in action in the
small intestine, there appears to be minimal effect of either upon rumen microbial protein
synthesis, unless CT concentration is extremely high (for instance over 130 g/kg DM; Table
6).  Rumen micro-organisms may have evolved methods of protecting themselves from high
concentrations of dietary CT (McSweeney et al. 2000).

Monomeric phenolics

Monomeric phenolics (simple phenolics, low molecular weight phenolics, phenolic
acids) are, or are closely related to, the building blocks of tannins and lignin.  The variety of
monomeric phenolics and their relevance to animal nutrition has been reviewed by Harborne
(1988), Lowry et al. (1996), and Foley et al. (1999).  Their significance to animal
performance derives from their absorption from the digestive system whereupon they interfere
with metabolism.  Despite their common occurrence in tropical forages and likely impact on
metabolism, effects on animal performance remain to be properly defined.

Examples include the cinnamates (e.g. p-coumaric acid and ferulic acid in tropical
grasses) and the flavanoid monomers, grouped as the flavones (luteolin and apigenin in the
shrub legume Tagasaste; Chamaecytiscus proliferens), flavonols (e.g. quercetin and myricetin
in leucaena), and the flavanols or catechins.   Flavanoid monomers are commonly within the
soluble fraction of forage, and often in glycosidic form (i.e. with a sugar attached), whilst the
cinnamates play a structural role in the cell wall.  Concentrations of cinnamates in tropical
grasses can be in the order of 10-50 g/kg DM, flavanol glycosides in Leucaena leucocephal



60 g/kg DM, and flavones in tagasaste fluctuate from approximately 50-150 g/kg DM (Lowry
et al. 1984, Lowry et al. 1993b, Lowry et al. 1996, Edwards 2000).  Hydrolysable tannins and
related phenolics such as the catechin gallates occur at high concentrations in Acacia nilotica
(up to 450 g/kg DM) and should be capable of supplying large quantities of phenolic
monomers upon hydrolysis by microbes in the rumen environment (Lowry et al. 1993a, and
pers comm.).

Monomeric phenolics can impede digestion in vitro, but effects in vivo appear to
be of minimal importance (Jung and Fahey 1983, Jung 1985, Lowry et al. 1996, Edwards
2000).  If the microbial population is appropriately adapted it appears that significant parts of
the molecules can be converted to metabolisable energy, e.g. any attached sugars, plus parts
of the carbon rings, other than the difficult to degrade “B” ring, may be degraded to acetates
(Lowry et al. 1996).  Instead, it is likely that effects on post-absorption on animal metabolism
is of greater importance.

Potential effects on animal performance may be mediated by a change in the acid-
base balance of the animal.  This in turn may impede appetite and also the efficiency of
utilisation of absorbed N.  Once ingested, rumen microbes degrade the 3-ringed flavanoids
and the single-ringed cinnamates to leave mainly single-ringed structures such as
phenylpropionic and phenylacetic acids. These are quantitatively absorbed into the blood
stream (80% or more, Pagella et al. 1997). Following conjugation in the liver, the absorbed
phenolics are excreted in the urine as benzoic acid derivatives or “phenolic conjugates”.   The
majority is as hippuric acid (benzene conjugated with glycine), but include benzoic acid,
phenylacetic, and p-cresol variously conjugated with either glycine, sulphur, or glucuronic
acid (Martin 1969ab, 1982, 1983, Pagella et al. 1997, Foley et al. 1999).

Metabolic acid-base balance is perturbed toward to acidic since the phenolic
conjugates formed by the liver are relatively strong organic acids.  As outlined by Foley et al.
(1999) and Foley et al. (1995), absorbed phenolics could influence N metabolism in two
ways, as a urinary loss of N in the glycine of conjugated phenolics (e.g. hippuric acid), or
indirectly via a reduction in acid-base balance.  In order to maintain pH homeostasis, HCO3

- is
required to neutralise excess H+ (Stewart 1983).  One source is via the degradation of amino
acids by the kidney resulting in the simultaneously release of NH3+ into the urine and HCO3

-

into the blood stream (Halperin et al. 1992). There is also speculation that processes such as
ureagenesis and gluconeogenesis may be impeded by absorbed phenolics, possibly due to the
requirement for HCO3

- in these pathways competing with that required for pH homestasis
(Foley et al. 1995, Foley et al. 1999).  Hence absorption of phenolic monomers are
hypothesised to stimulate a wastage of circulating amino acids and therefore a reduction in the
efficiency of conversion of absorbed N into tissue N.  Illius and Jessop (1995) have modeled
such an effect, in sheep, and defined a decline in rate of gain in tissue protein from +2 g/d to –
12 g/d as the absorption of allelochemical (e.g. phenolics) increases from 0 to 0.5 mol/d.
However, as far as we are aware, in vivo data for ruminants, necessary to validate such
predictions, have yet to be published.

Evidence in support of the above hypotheses is as follows.  In terms of direct loss of
N, Lowry et al. (1993b) noted N losses as hippuric acid in sheep fed tropical grasses in the
order of 0.5 to 1.0 g N/day, and these comprised 5 to 17% of total N intake.  Other evidence is
more circumstantial.  With regard to appetite depression, as concentration of phenolic
monomers in Tagasaste rise, in hot dry summer and autumn months, liveweight gains of cattle
decline, largely due a reduction in VFI, even though there is plenty of feed on offer (Edwards
et al, 1997ab, Edwards 2000; Figure 2).  In the Mediterranean climate of Western Australia
the temperate shrub legume Tagasaste (Chhomaecytisus proliferus) produces high LWG in
young cattle during winter (1.2 kg/day) when the concentration of total phenolics in leaf plus
edible stem is low (35 g/kg DM), but low LWG during summer/autumn (0-0.75 kg/day) when



the concentration of total phenolics is high (80 g/kg DM); Edwards 2000).  The principal
phenolic compounds in Tagasaste are the flavones apigenin and luteolin; extractable CT
concentrations are very low but measurable CT levels have been found in the protein-bound
and fibre-bound fractions (Edwards 2000; Table 8).  Moreover, in line with a hypothesised
effect of phenolic monomers on acid-base balance, the urine pH of cattle grazing Tagasaste
also declines to unusually low levels (pH 5.8 to 6.0), the lowest pH’s occurring when the
concentration of phenolics in the Tagasaste have previously been shown to peak.  In cattle
grazing temperate grass-based pastures, urine pH is commonly well above 8 units (Roche et
al. 2000).  We have also found the urine pH’s of sheep fed leucaena to be less than those fed
lucerne chaff (pH 6.68 v. 8.34, P<0.05); (McNeill et al. 2000b).  These declines in urine pH
should be indicative of a decline in the acid-base balance of the whole animal (Halperin et al.
1992, Horst et al. 1997).

Others compounds present in temperate and tropical forages

A range of these other compounds and their potential affects upon animals is
summarised in Table 8.  Selections of the herb chicory (Chichorium intybus) for vegetative
growth have considereable potential in temperate agriculture.  The cultivar ‘Grasslands Puna’
is of high OMD (82%), breaks down rapidly in the rumen and has a very rapid fractional
outflow rate from the rumen; consequently VFI is high under grazing and it promotes high
rates of animal growth, especially during late summer/autumn when ryegrass-based pastures
are of low feeding value (Barry 1998; Kusmartono et al. 1996).  However, early studies with
dairy cows fed diets of chicory alone identified a bitter taint in the milk, and for this reason
chicory feeding to dairy cows is limited to 2 h/day, generally following the morning milking,
to restrict chicory intake to c. 25% of the total daily DM intake.  Degradation products of the
sesquiterpene lactones present in chicory, namely dihydrolactucin, tetrahydrolactucin and
hydroxyphenylacetic acid (HPAA) have been identified as the taint compounds in the milk of
chicory-fed cows (Visser 1992).  Tetrahydrolactucin and dihydrolactucin are probably formed
by hydrogenation in the rumen, whilst HPAA is a degradation product of lactupicrin.  A
selection programme has now been carried out to produce low sesquiterpene lactone chicory,
with a view to feeding this to dairy cows as a greater proportion of the diet.  However, whilst
this may solve the milk taint problem, extra care will be needed with management of this
plant, as the reduced concentration of sesquiterpene lactones may have lowered its chemical
defence against fungal diseases.

The herb plantain (Plantago lanceolata) contains both condensed tannins and the
iridoid glycosides acubin and catalpol and is being investigated for its potential anthelmintic
properties for grazing ruminants (Rumball et al. 1997).  Despite its high OMD when in the
vegetative state (80%), growth of lambs was much lower than found for chicory and was
similar to that for lambs grazing perennial ryegrass (Frazer and Rowarth 1996).  Niezen et al.
(1998) found very low growth in non-parasitised lambs grazing plantain (52 g/d) and no
evidence that it sustained growth in parasitised lambs.

Red clover (Trifolium pratense) contains the iso-flavones formononetin, biochanin,
daidzein and genistein.  High concentrations of formonontin present in the cultivars Pawera,
Hamera and Turoa (7-14 g/kg DM) cause problems of depressed ovulation rate, returns to
service and barrenness if fed to sheep before and during mating (Barry and Reid 1984).
However, these problems have now been overcome with the successful selection of red clover
cultivars for low formononetin content (<3 g/kg DM; McDonald et al. 1994).  Whilst high



concentrations of iso-flavones in red clover cause reproductive problems in sheep, they are
desirable for use in a developing human pharmaceutical industry in Australia and New
Zealand, that is being driven by the Novogen Company (Novogen 1999).  The iso-flavones
are extracted from vegetative red clover and consumed in tablet form as dietary supplements
to Western-type diets, which are normally low in iso-flavones, with the objective of reducing
pre- and post-menopause problems in women and of reducing prostate enlargement in men.
Current research is also focussed on modifying the iso-flavones to produce a range of
prescription drugs for the early treatment of cancer, athrosclerosis, hypertension and as anti-
flammatory drugs.

VFI of Tagasaste grown in Spain was low and negatively correlated to its
concentration of alkaloids (P <0.01; Ventura et al. 2000; Table 8).  Further study is needed of
the secondary compounds in Tagasaste, to establish the direct causes of the summer/autumn
depression in VFI.

The shrub legume Glyricidia sepium grows widely throughout the tropics and is
known to be of high nutritive value, if not for the common observation that stock will not eat
it as high proportion of the diet thought to be due to its pungent odour.  It is frequently fed as
a supplement to low quality roughage diets (Preston and Leng 1987).  Leaves of Glyricidia
are high in N content (43 g/kg DM) and contain approximately 40 g CT/kg DM; an unusual
feature is that most of this CT is protein-bound with the extractable CT level being close to
zero (Jackson et al. 1996).  Therefore analytical methods that measure extractable CT only,
will incorrectly classify Glyricidia as not containing CT.  Recent investigations (Karda 2000;
Norton et al. 2000) suggest high concentrations of dihydro-coumarin, rather than coumarin,
are associated with low levels of acceptability of Glyricidia leaves by animals but
supplementation studies involving adding this compound to the diet are required; binding CT
with additions of PEG did not change acceptability.

VFI of immature leaves of the tropical shrub legume Cratylia argentia is low and is
increased following wilting (Raaflaub and Lascano 1995); possible contributing factors are its
contents of hydroxy-coumarins, terpenes and condensed tannins and further research is
required.

The tropical grass Brachiaria decumbens (signalgrass) contains saponins which have
been correlated with a photosensitisation reaction in young grazing cattle in Colombia
(Lascano, personal communication), and have been detected in rumen contents of sheep
intoxicated through feeding on signalgrass in Malaysia (Lajis et al. 1993; Salam Abdullah et
al. 1992).  Relative concentration of saponins in signalgrass is approximately 3.5 times higher
than found in Brachiaria humidicala and Brachiaria brizantha (Lascano, personal
communication).  A major plant-breeding programme is underway with Brachiaria
decumbens in Colombia including identification of genotypes that do not contain saponin.
Further research is clearly required in this area.

Conclusions

It is concluded that the presence of secondary compounds can have a profound effect
upon both the nutritive value and the feeding value of both temperature and tropical forages
and that these effects can be beneficial in some instances as well as being detrimental in
others.  In order to fully understand the effects of these compounds upon grazing animals, it is
necessary to develop a knowledge of their chemical structure and reactivity, particularly with
proteins, so that an understanding of their mode of action can be determined.  From a
knowledge of this, together with their effects upon nutrient supply and upon VFI and growth
of the grazing animal, it will be possible to define if the concentration of specific secondary
compounds in forages should be either decreased or increased in concentration.
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Table 1 - The extractable and bound condensed tannin content of legumes, grasses and
herbs fed to ruminants in temperate grazing systems, measured by the butanol- HCI
method*.

Condensed tannin (g/kg DM)
Forage

Extractable Protein-
bound

Fibre-
bound Total

Legumes:
Big trefoil (Lotus pedunculatus) 61 14 1 77
Birdsfoot trefoil (Lotus corniculatus) 36 9 2 47
Sulla (Hedysarum coronarium)

Autumn
Spring

35
73

14
9

2
2

51
84

Sainfoin (Onobrychis vicifolia) 29
Red clover (Trifolium pratense)  0.4  0.6    0.7 1.7
Lucerne (Medicago sativa)  0.0  0.5    0.0 0.5

Grasses:
Perennial ryegrass (Lolium perenne)   0.8  0.5    0.5 1.8

Herbs:
Chicory (Chicorium intybus)   1.4  2.6    0.2 4.2
Sheeps burnet (Sanguisorba minor)   1.0  1.4    1.0 3.4

* From Terrill et al. (1992b); Jackson et al. (1996); Hoskin et al. (1999).



Table 2 - The effect of condensed tannins (CT) on amino acid digestion in the small intestine
of sheep fed Lotus corniculatus (22 g CT/kg DM) or Lotus pedunculatus (55 g CT/kg DM)
with (-CT) or without (+ CT) a continuous intra-ruminal infusion of polyethylene glycol
(PEG; MW 3500).

Lotus corniculatus1 Lotus pedunculatus2

+CT       -CT      +CT        -CT

N intake (g N/d) 37.80 37.80 42.40 47.60

N digestibility 0.70 0.78 0.67 0.81

Abomasal NAN flux (g/d) 29.50 25.80 34.00 31.30

Abomasal EAA flux (g/d) 95.60 63.90 121.00 105.60

Apparent EAA absorption (g/d) 58.80 36.10 81.40 83.50

EAA digestibility in SI 0.69 0.65 0.66 0.79

Abomasal NEAA flux (g/d) 68.50 60.00 84.30 77.70

Apparent NEAA flux (g/d) 37.40 41.30 50.80 57.20

NEAA digestibility in SI 0.55 0.69 0.59 0.73

1 From Waghorn et al. (1997)
2 From Waghorn et al. (1994)
N, nitrogen; NAN, non-ammonia-nitrogen; EAA, essential amino acids; SI, small intestine, NEAA, nonessential
aminoacids



 Table 3 - Voluntary feed intake, liveweight gain, carcass gain and wool growth in lambs
(Experiment 1) and dry ewes (Experiment 2) grazing the forage legumes Lotus corniculatus
(27-34 g CT/kg DM) and lucerne (0.3 g total CT/kg/DM) during summer.

Lotus Lucerne

CT
acting

PEG
supplemented

CT
acting

PEG
supplemented

SE

Experiment 1 (1991/92; 27.9 kg LW1; 4.5 kg DM/lamb/day2)

VFI (kg OM/day) 1.76 ND 1.65 ND 0.04

LWG (g/day) 228 ND 183 ND 8.2

Carcass weight (kg) 20.4 ND 17.8 ND 0.82

Fleece weight (kg) 2.78 ND 2.25 ND 0.091

Experiment 2 (1994/95; 19.3 kg LW; 5.3 kg DM/lamb/day)

LWG (g/d) 271 250 ND ND 8.0

Carcass weight (kg) 21.1 19.8 ND ND 0.57

Fleece weight (kg) 1.75 1.78 ND ND 0.067

Experiment 3 (1992/93); 22.4 kg LW; 2.5 kg DM/lamb/day)

Rumen ammonia (mg
N/1) 255 370 555 535

VFI (kg OM/day) 1.19 1.20 1.32 1.34 0.056

LWG (g/d) 203 188 185 178 5.8

Carcass gain (g/d) 79 75 68 63 2.9

Wool growth (g/d) 12.1 10.9 10.8 10.2 0.39

Experiment 4 (1995/96; 54.0 kg LW; 1.3 kg DM/ewe/day)

Rumen ammonia (mg
N/1) 221 278 ND ND 8.5

VFI (kg OM/day) 1.23 1.20 ND ND 0.051

LWG (g/d) 54 67 ND ND 9.3

Wool growth (g/d) 13.2 11.1 ND ND 0.66

From Wang et al. (1996a); Min et al. (1998); Douglas et al. (1995; 1999)
ND = not determined
1 Initial liveweight.
2 Daily green forage allowance.



Table 4 - The effect of grazing ewes on Lotus corniculatus or perennial ryegrass/white
clover (pasture), and of supplementation with polyethylene glycol (PEG) on maximum
ovulation rate and on wool production.

Pasture Lotus

Experiment1

+/- PEG + PEG CT-
acting

Legume
effect
(%)2

CT
effect
(%)3

(Ovulation rate)

Min et al. (1999) 5 1.33 1.46 1.76 9.8 22.6

Luque et al. (2000) 6 1.45 1.66 1.64 14.5 0

Min et al. (2001) 7 1.48 1.58 1.79 6.6 14.2

Mean 1.42 1.57 1.73 10.3 12.3

(Clean fleece weight; kg)

Min et al. (1999) 5 1.12 1.31 1.35 17.0 3.6

Luque et al. (2000) 6 1.54 1.69 1.73 9.7 2.6

Min et al. (2001) 7 1.41 1.61 1.71 14.2 7.1

Mean 1.36 1.54 1.60 13.6 4.4

(Liveweight gain; g/day)

Min et al. (1999) 5 12 34 40

Luque et al. (2000) 6      -12   -20   -25

Min et al. (2001) 7 43 16 22

1 Initial liveweight was respectively 54, 60 and 53 kg in Experiments 5, 6 and 7.
2 Calculated as (Lotus PEG – Pasture) x 100

            Pasture
3 Calculated as (Lotus CT acting – Lotus PEG) x 100

                   Pasture



Table 5 - The effect of grazing condensed tannin-containing legumes (sulla and Lotus
pedunculatus) upon the growth and parasite status of anthelmintic drenched (parasite free)
and non-drenched (parasitised) lambs.  Lucerne was also grazed as a CT-free control legume.

Lucerne Sulla Lotus
 pedunculatus

Experiment 1 (28 days)

Total condensed tannin (g/kg DM) 1 120

Liveweight gain (g/day):
Anthelmintic drenched
Non-drenched

263
  28

316
231

Faeces egg count (eggs/g):
Non-drenched 2,220 1,320

Experiment 2 (42 days)

Total condensed tannin (g/kg DM) 2 99

Liveweight gain (g/day):
Anthelmintic drenched
Non-drenched

184
-39

200
129

Total worm burden:
Non-drenched 19,268 8,016

Experiment 3 (42 days)
Liveweight gain (g/d):

Anthelmintic drenched
Non-drenched

243
121

226
175

232
160

Total worm burden:
Non-drenched 18,084 13,090 23,665

From Niezen et al. (1995; 1998).



 Table 6 - Impact of dietary condensed tannin (CT) from Leucaena spp. on nitrogen and
organic matter utilisation in sheep, with or without CT neutralised by polyethylene glycol
(PEG).

L. leucocephala
(CT = 73 g/kg DM,

fed fresh)

Leucaena KX2
hybrid

(CT = 129 g/kg DM,
fed as dried leaf)

L. pallida
CT = 201 g/kg DM,

fed as dried leaf)

+ PEG CT

 acting
+ PEG CT

acting
+ PEG CT

acting

Intake, DM or OM (g/d) 984 a 934 a 921 a 896 a 1080 b 595 a

OM digestibility (%) 64.4 a 65.0 a 0.61 b 0.54 a 48.8 b 37.5 a

Nitrogen intake (g/d) 33.5 a 31.7 a 28.3 a 27.9 a 27.7 a 19.5 b

Non-bacterial NAN (g/d) 2.6 a 14.2 a1 ND ND ND ND

Microbial N (g/d) 18.5 a 17.6 a 10.5 a 9.7a 5.4a 2.0a

Faecal N (g/d) 7.5 b 11.3 a 8.1 b 15.9 a 11.9 b 19.4 a

N digestibility (%) 77.5 b 64.2 a 71.4 b 43.2 a 57.2 b 0.9 a

N retention (g/d) 10.37 a 7.21 a 4.96 b 3.01 a -4.5 b -9.9 a

From McNeill et al. (1998), McNeill et al. (2000a), and Gobius (unpublished)
Across rows and within each forage, means lacking a common superscript differ (P<0.05)
KX2 = L.leucocephala x L. pallida hybrid
ND = not determined, NAN = non-ammonia N
CT assayed by the rapid Butanol-HCl methodology as modified by Dalzell and Kerven (1998)
 1P<0.10



Table 7 - Voluntary feed intake (g DM/day), liveweight gain (g/day), and wool growth
(mg/cm2.day) in sheep fed Acacia spp. foliage for extended periods.

CT
acting

PEG
supplemented

CT effect
(%)1

A. aneura, Pritchard et al. (1992), 10 weeks pen fed, CT = 96 g/kg of total DMI

VFI 368a 655 b -44

LWG -64 a 35 b -283

Wool growth, Period 1 0.30 a 0.40 a ns

Wool growth, Period 2 0.18 a 0.50 b -64

A. aneura, Miller et al. (1997), 25 weeks grazing, CT intake unknown

LWG, Period 1 22 a 44 b -50

LWG, Period 2 70 a 46 b 52

Wool growth, Period 1 0.745 a 0.809 b -8

Wool growth, Period 2 1.061 a 1.075 a ns

A. cyanophylla (=A. saligna), Ben Salem et al. (1999a), 10 weeks pen fed,
CT = 25 g/kg of total DMI

VFI (kg OM/day)2 337 a 278 a ns

LWG (g/d) 69 a 95 b -27

a,b Within rows, means with a similar superscript do not differ (P<0.05)
ns not significant at ((P<0.05)
1 Calculated as (CT acting – PEG supplemented)/PEG supplemented x 100
2 Intakes are of foliage only;  all sheep were also offered 400g barley grain per day
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Table 8 - Other secondary compounds present in a range of temperate and tropical forages and their effects upon animals.

Plant Type of
Plant

Secondary
compound(s)

Approx.
concentration

(g/kg DM)

Nutritional
effects Author Country

TEMPERATE FORAGES
Chicory Herb Sequiterpene lactones 3.5 Detrimental milk

flavour
Barry (1998) New Zealand

Plantain Herb Acubin
Catalpol
Condensed tannin

22
  8
14

Possible anthelmintic
properties

Rumball et al.
(1997)

New Zealand

Red clover Forage
Legume

Isoflavones 7-14 Adverse effects on
reproduction in sheep.
Beneficial effects in
human nutrition.

Barry & Reid
(1984)

Novogen (1999)

Australia &
New Zealand

Tagastaste Shrub
Legume

Flavones
Condensed tannin
Alkaloids

50-110
25-50
2-11

Restrict
VFI

Edwards (2000)
Ventura et al.
(2000)

Australia
Spain

TROPICAL FORAGES
Glyricidia Legume

Tree
Coumarin
Dihydro-coumarin
Condensed tannin

0.11

1.2
70

  7.22

   0.3
  26

Possible volatile
intake repellants

Karda (1999) Australia

Cratylia
argentia

Shrub
Legume

Hydroxy-coumarins
Terpenes
Condensed tannin

Possible intake
repellants

Raaflaub & Lascano
(1995)

Colombia

Brachiaria
decumbens

Grass Saponins Photosensitisation in
young cattle

Lajis et al. (1993)
Salam Abdullah
et al. (1992)

Malaysia

1 Very low   acceptability.
2 Better        acceptability.



Figure 1 The relationship between condensed tannins concentration in lotus species dry
matter (X), and the ratio of non-ammonia-nitrogen (NAN) flowing at the abomasum or
duodenum (1, L. corniculatus; g, L. pedunculatus) and microbial N (Ο, L. corniculatus; n,
L. pedunculatus) per unit of N eaten by sheep. Sources:  Barry & Manley 1984; Barry et al.
1986; Waghorn et al. 1987a & b, 1994; McNabb et al. 1993; Wang et al. 1996b.

From Min (1999).
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Figure 2 Seasonal fluctuations in the concentration of phenolic compounds in hand-picked
portions of the edible leaf and stem material of tagasaste ( ) and liveweight performance of
cattle grazing that material ( ) in 1994/95. Values are means +/- s.e.m.

From Edwards (2000).
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