184 research outputs found

    Exoplanets - search methods, discoveries, and prospects for astrobiology

    Get PDF
    Whereas the Solar System has Mars and Europa as the best candidates for finding fossil/extant life as we know it - based on complex carbon compounds and liquid water - the 263 (non-pulsar) planetary systems around other stars as known at 15 September 2008 could between them possess many more planets where life might exist. Moreover, the number of these exoplanetary systems is growing steadily, and with this growth there is an increase in the number of planets that could bear carbon-liquid water life. In this brief review the main methods by which exoplanets are being discovered are outlined, and then the discoveries that have so far been made are presented. Habitability is then discussed, and an outline presented of how a planet could be studied from afar to determine whether it is habitable, and whether it is indeed inhabited. This review is aimed at the astrobiology community, which spans many disciplines, few of which involve exoplanets. It is therefore at a basic level and concentrates on the major topics.Comment: 37 pages, 12 Figure

    Mars before the Space Age

    Get PDF
    Mars has surely been scrutinised since the dawn of humankind. Its appearance every couple of years like a drop of blood in the sky led to warlike attributes in the ancient world. In the 16th century Tycho Brahe made accurate observations of the position of Mars that enabled Johannes Kepler to obtain his first two laws of planetary motion. These in turn were explained by Newton's laws of motion and gravity. In the 17th century the first telescope observations were made, but Mars is small and very little surface detail could be discerned. Throughout the 18th and 19th centuries telescopes improved, revealing many dark areas on the red tinted surface. During the close opposition of 1877 sufficient detail could be seen that enabled Giovanni Schiaparelli to announce that he could see about 40 canali on Mars. This led to the saga of the canals of Mars, finally laid to rest in 1971 when Mariner 9 made observations from Martian orbit showing that the canali/canals do not exist. Belief that there was life on Mars was widespread in the 19th century. However, the majority of astronomers never believed in Martian intelligence. Least controversial was the view that the dark areas were some form of plant life. This view persisted until Mariner 4 flew past Mars in 1965 and discovered a far thinner atmosphere than previously thought. This was a low point, with impact craters dominating the images. It was Mariner 9 that revealed much more promising landscapes, including volcanic features, and others indicating that water had flowed across the surface, particularly when Mars was young. Thus, the contemporary era of Mars exploration began. Our picture of Mars today is not only much more complete than that before Mariner 4, in several ways it is quite different. The belief, however, that there might be life on Mars persists – subsurface life cannot be ruled out and, failing that, there might be ancient fossils on Mars

    The Stability of the orbits of Earth-mass planets in and near the habitable zones of known exoplanetary systems

    Get PDF
    We have shown that Earth-mass planets could survive in variously restricted regions of the habitable zones (HZs) of most of a sample of nine of the 93 main-sequence exoplanetary systems confirmed by May 2003. In a preliminary extrapolation of our results to the other systems, we estimate that roughly a third of the 93 systems might be able to have Earth-mass planets in stable, confined orbits somewhere in their HZs. Clearly, these systems should be high on the target list for exploration for terrestrial planets. We have reached this conclusion by launching putative Earth-mass planets in various orbits and following their fate with a mixed-variable symplectic integrator

    Habitability of known exoplanetary systems based on measured stellar properties

    Full text link
    At present, because of observational selection effects, we know of no exoplanetary systems with any planetary masses close to that of the Earth. We have therefore used computer models to see whether such planets could be dynamically stable in the presence of the more massive planets known to be present, and in particular whether planets with roughly an Earth mass could remain confined to the classical habitable zone (HZ) for long enough for life to have emerged. Measured stellar properties have been used to determine for each system the present location of the HZ. We have also determined the critical distances from the orbit of each giant planet within which an Earth-mass planet would suffer large orbital changes. We then evaluated the present habitability of each and every exoplanetary system by examining the penetration of these critical distances into the HZ. The critical distances can be obtained by extensive computer modelling of an exoplanetary system. This is far too time consuming to apply to all of the 150 or so systems already known, and to keep up with the latest discoveries. Therefore, in earlier work we studied a few systems in great detail, and developed a speedier means of obtaining the critical distances. We summarize this comparatively quick method here. We can then evaluate comparatively quickly the present habitability of each exoplanetary system by examining the penetration of the critical distance(s) into the HZ. The results are encouraging for astrobiology.Comment: Accepted for publication by The Astrophysical Journal. A few revisions have been made following suggestions by the refere

    Habitability of exoplanetary systems with planets observed in transit

    Full text link
    (Shortened) We have used the measured properties of the stars in the 79 exoplanetary systems with one or more planets that have been observed in transit, to estimate each system's present habitability. The measured stellar properties have been used to determine the present location of the classical habitable zone (HZ). To establish habitability we use the estimated distances from the giant planet(s) within which an Earth-like planet would be inside the gravitational reach of the giant. Of the 79 transiting systems known in April 2010, only 2 do not offer safe havens to Earth-like planets in the HZ, and thus could not support life today. We have also estimated whether habitability is possible for 1.7 Gyr into the past i.e. 0.7 Gyr for a heavy bombardment, plus 1.0 Gyr for life to emerge and thus be present today. We find that, for the best estimate of each stellar age, an additional 28 systems do not offer such sustained habitability. If we reduce 1.7 Gyr to 1.0 Gyr this number falls to 22. However, if giant planets orbiting closer to the star than the inner boundary of the HZ, have got there by migration through the HZ, and if this ruled out the subsequent formation of Earth-like planets, then, of course, none of the presently known transiting exoplanetary systems offers habitability. Fortunately, this bleak conclusion could well be wrong. As well as obtaining results on the 79 transiting systems, this paper demonstrates a method for determining the habitability of the cornucopia of such systems that will surely be discovered over the next few years.Comment: 20 pages, 2 Figures, 4 Tables. Accepted for publication by MNRA

    Effect of Gene Therapy on Visual Function in Leber's Congenital Amaurosis

    Get PDF
    Early-onset, severe retinal dystrophy caused by mutations in the gene encoding retinal pigment epithelium–specific 65-kD protein (RPE65) is associated with poor vision at birth and complete loss of vision in early adulthood. We administered to three young adult patients subretinal injections of recombinant adeno-associated virus vector 2/2 expressing RPE65 complementary DNA (cDNA) under the control of a human RPE65 promoter. There were no serious adverse events. There was no clinically significant change in visual acuity or in peripheral visual fields on Goldmann perimetry in any of the three patients. We detected no change in retinal responses on electroretinography. One patient had significant improvement in visual function on microperimetry and on dark-adapted perimetry. This patient also showed improvement in a subjective test of visual mobility. These findings provide support for further clinical studies of this experimental approach in other patients with mutant RPE65. (ClinicalTrials.gov number, NCT00643747.)Supported by grants from the U.K. Department of Health, the British Retinitis Pigmentosa Society, and the Special Trustees of Moorfields Eye Hospital, and by the Sir Jules Thorn Charitable Trust, the Wellcome Trust, the European Union (EVI-Genoret and Clinigene programs), the Medical Research Council, Foundation Fighting Blindness, Fight for Sight, the Ulverscroft Foundation, Fighting Blindness (Ireland), Moorfields Eye Hospital, and Institute of Ophthalmology Biomedical Research Centre for Ophthalmology, University College London

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty
    • …
    corecore