101 research outputs found
Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada
Concentrations of 7Be and 210Pb in 2 years of weekly high-volume aerosol samples collected at Alert, Northwest Territories, Canada, showed pronounced seasonal variations. We observed a broad winter peak in 210Pb concentration and a spring peak in 7Be. These peaks were similar in magnitude and duration to previously reported results for a number of stations in the Arctic Basin. Beryllium 10 concentrations (determined only during the first year of this study) were well correlated with those of 7Be; the atom ratio 10Be/7Be was nearly constant at 2.2 throughout the year. This relatively high value of 10Be/7Be indicates that the stratosphere must constitute an important source of both Be isotopes in the Arctic troposphere throughout the year. A simple mixing model based on the small seasonal variations of 10Be/7Be indicates an approximately twofold increase of stratospheric influence in the free troposphere in late summer. The spring maxima in concentrations of both Be isotopes at the surface apparently reflect vertical mixing in rather than stratospheric injections into the troposphere. We have merged the results of the Be-based mixing model with weekly O3 soundings to assess Arctic stratospheric impact on the surface O3 budget at Alert. The resulting estimates indicate that stratospheric inputs can account for a maximum of 10-15% of the 03 at the surface in spring and for less during the rest of the year. These estimates are most uncertain during the winter. The combination of Be isotopic measurements and O3 vertical profiles could allow quantification of the contributions of O3 from the Arctic stratosphere and lower latitude regions to the O3 budget in the Arctic troposphere. Although at present the lack of a quantitative understanding of the temporal variation of O3 lifetime in the Arctic troposphere precludes making definitive calculations, qualitative examples of the power of this approach are given
Saharan dust and ice nuclei over Central Europe
Surface measurements of aerosol and ice nuclei (IN) at a Central European mountain site during an episode of dust transport from the Sahara are presented. Ice nuclei were sampled by electrostatic precipitation on silicon wafers and were analyzed in an isothermal static vapor diffusion chamber. The transport of mineral dust is simulated by the Eulerian regional dust model DREAM. Ice nuclei and mineral dust are significantly correlated, in particular IN number concentration and aerosol surface area. The ice nucleating characteristics of the aerosol as analyzed with respect to temperature and supersaturation are similar during the dust episode than during the course of the year. This suggests that dust may be a main constituent of ice nucleating aerosols in Central Europe
Diversity oriented biosynthesis via accelerated evolution of modular gene clusters.
Erythromycin, avermectin and rapamycin are clinically useful polyketide natural products produced on modular polyketide synthase multienzymes by an assembly-line process in which each module of enzymes in turn specifies attachment of a particular chemical unit. Although polyketide synthase encoding genes have been successfully engineered to produce novel analogues, the process can be relatively slow, inefficient, and frequently low-yielding. We now describe a method for rapidly recombining polyketide synthase gene clusters to replace, add or remove modules that, with high frequency, generates diverse and highly productive assembly lines. The method is exemplified in the rapamycin biosynthetic gene cluster where, in a single experiment, multiple strains were isolated producing new members of a rapamycin-related family of polyketides. The process mimics, but significantly accelerates, a plausible mechanism of natural evolution for modular polyketide synthases. Detailed sequence analysis of the recombinant genes provides unique insight into the design principles for constructing useful synthetic assembly-line multienzymes
Career guidance and the changing world of work: Contesting responsibilising notions of the future.
Career guidance is an educational activity which helps individuals to manage their participation in learning and work and plan for their futures. Unsurprisingly career guidance practitioners are interested in how the world of work is changing and concerned about threats of technological unemployment. This chapter argues that the career guidance field is strongly influenced by a “changing world of work” narrative which is drawn from a wide body of grey literature produced by think tanks, supra-national bodies and other policy influencers. This body of literature is political in nature and describes the future of work narrowly and within the frame of neoliberalism. The ‘changing world of work’ narrative is explored through a thematic analysis of grey literature and promotional materials for career guidance conferences. The chapter concludes by arguing that career guidance needs to adopt a more critical stance on the ‘changing world of work’ and to offer more emancipatory alternatives.N/
Recommended from our members
Minimum Information about a Biosynthetic Gene cluster
A wide variety of enzymatic pathways that produce specialized metabolites in bacteria, fungi and plants are known to be encoded in biosynthetic gene clusters. Information about these clusters, pathways and metabolites is currently dispersed throughout the literature, making it difficult to exploit. To facilitate consistent and systematic deposition and retrieval of data on biosynthetic gene clusters, we propose the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard.Chemistry and Chemical Biolog
Photochemical production and loss of organic acids in high Arctic aerosols during long range transport and polar sunrise ozone depletion events
Unique daily measurements of water-soluble organics in fine ( 2 μm) aerosols were conducted at Alert in the Canadian Arctic in winter to spring of 1992. They yield insight into photochemical production and loss of organics during long-range transport and ozone depletion events following polar sunrise. Comprehensive analyses of a,w-dicarboxylic acids (C2-C12), w-oxocarboxylic acids (C2-C9) and a-dicarbonyls (C2, C3) as well as pyruvic acid and aromatic (phthalic) diacid were conducted using GC and GC/MS techniques. Oxalic (C2) acid was generally the dominant diacid species in both fine and coarse fractions, followed by malonic (C3) and succinic (C4) acids. Concentrations of total diacids in the fine aerosol fraction (0.2-64 ngm-3) were 5-60 times higher than those in the coarse fraction (0.01-3 ngm-3). After polar sunrise in early March, the total concentration of fine aerosol diacids increased by a factor of 3 to 5 while the coarse mode did not change significantly. From dark winter to sunlit spring, temporal changes in correlations and ratios of these water-soluble organics to vanadium and sulfate measured simultaneously suggest that atmospheric diacids and related organic compounds are largely controlled by long-range atmospheric transport of polluted air during winter, but they are significantly affected by photochemical production. The latter can occur in sunlight either during transport to the Arctic or during photochemical events associated with surface ozone depletion and bromine chemistry near Alert in spring. Conversion of gaseous precursors to particulate matter via photochemical oxidation was intensified at polar sunrise, resulting in a peak in the ratio of total diacids to V. During ozone depletion events, complex patterns are indicated in photochemical production and loss depending on the diacid compound. Unsaturated (maleic and phthalic) diacids were inversely correlated with particulate Br whereas saturated diacids (C2-C4) positively correlated with particulate Br. These results suggest that Br chemistry associated with ozone depletion leads to degradation of unsaturated diacids and to the production of smaller saturated diacids
Secondary formation of water-soluble organic acids and α-dicarbonyls and their contributions to total carbon and water-soluble organic carbon : Photochemical aging of organic aerosols in the Arctic spring
Water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C6, C9), and α-dicarbonyls (glyoxal and methylglyoxal) were determined in the Arctic aerosols collected in winter to early summer, as well as aerosol total carbon (TC) and water-soluble organic carbon (WSOC). Concentrations of TC and WSOC gradually decreased from late February to early June with a peak in spring, indicating a photochemical formation of water-soluble organic aerosols at a polar sunrise. We found that total (C2-C11) diacids (7-84 ng m^[-3]) increased at polar sunrise by a factor of 4 and then decreased toward summer. Their contributions to TC (average 4.0%) peaked in early April and mid-May. The contribution of total diacids to WSOC was on average 7.1%. It gradually increased from February (5%) to a maximum in April (12.7%) with a second peak in mid-May (10.4%). Although oxalic acid (C2) is the dominant diacid until April, its predominance was replaced by succinic acid (C4) after polar sunrise. This may indicate that photochemical production of C2 was overwhelmed by its degradation when solar radiation was intensified and the atmospheric transport of its precursors from midlatitudes to the Arctic was ended in May. Interestingly, the contributions of azelaic (C9) and ω-oxobutanoic acids to WSOC increased in early summer possibly due to an enhanced emission of biogenic unsaturated fatty acids from the ocean followed by photochemical oxidation in the atmosphere. An enhanced contribution of diacids to TC and WSOC at polar sunrise may significantly alter the hygroscopic properties of organic aerosols in the Arctic
Intercomparison of the measurements of oxalic acid in aerosols by gas chromatography and ion chromatography
Oxalate, the anion of oxalic acid, is one of the most abundant measurable organic species in atmospheric aerosols. Traditionally, this bifunctional species has been measured by gas chromatography (GC) after derivatization to butyl ester and by ion chromatography (IC) without derivatization. However, there are few published comparisons of the two techniques. Here, we report the results of an intercomparison study for the measurement of oxalic acid in Arctic aerosols (<2.5 μm, n = 82) collected in 1992 using GC and IC. The concentrations of oxalic acid by GC ranged from 6.5-59.1 ng m^[-3] (av. 26.0 ng m^[-3], median 26.2 ng m^[-3]) whereas those by IC ranged from 6.6-52.1 ng m^[-3] (av. 26.6 ng m^[-3], median 25.4 ng m^[-3]). They showed a good correlation (r = 0.84) with a slope of 0.96. Thus, observations of oxalate obtained by GC employing dibutyl esters are almost equal to those by IC. Because the accuracy of oxalic acid by GC method largely depends on the method used, it is important to strictly examine the recovery in each study
- …