604 research outputs found
Holography in the EPRL Model
In this research announcement, we propose a new interpretation of the EPR
quantization of the BC model using a functor we call the time functor, which is
the first example of a CLa-ren functor. Under the hypothesis that the universe
is in the Kodama state, we construct a holographic version of the model.
Generalisations to other CLa-ren functors and connections to model category
theory are considered.Comment: research announcement. Latex fil
A New Recursion Relation for the 6j-Symbol
The 6j-symbol is a fundamental object from the re-coupling theory of SU(2)
representations. In the limit of large angular momenta, its asymptotics is
known to be described by the geometry of a tetrahedron with quantized lengths.
This article presents a new recursion formula for the square of the 6j-symbol.
In the asymptotic regime, the new recursion is shown to characterize the
closure of the relevant tetrahedron. Since the 6j-symbol is the basic building
block of the Ponzano-Regge model for pure three-dimensional quantum gravity, we
also discuss how to generalize the method to derive more general recursion
relations on the full amplitudes.Comment: 10 pages, v2: title and introduction changed, paper re-structured;
Annales Henri Poincare (2011
Efficacy and safety of Cannabidiol and Tetrahydrocannabivarin on glycemic and lipid parameters in patients with Type 2 diabetes: a randomized, double-blind, placebo-controlled, parallel group pilot study
OBJECTIVE Cannabidiol (CBD) and Δ9-tetrahydrocannabivarin (THCV) are nonpsychoactive phytocannabinoids affecting lipid and glucose metabolism in animal models. This study set out to examine the effects of these compounds in patients with type 2 diabetes.
RESEARCH DESIGN AND METHODS In this randomized, double-blind, placebo-controlled study, 62 subjects with noninsulin-treated type 2 diabetes were randomized to five treatment arms: CBD (100 mg twice daily), THCV (5 mg twice daily), 1:1 ratio of CBD and THCV (5 mg/5 mg, twice daily), 20:1 ratio of CBD and THCV (100 mg/5 mg, twice daily), or matched placebo for 13 weeks. The primary end point was a change in HDL-cholesterol concentrations from baseline. Secondary/tertiary end points included changes in glycemic control, lipid profile, insulin sensitivity, body weight, liver triglyceride content, adipose tissue distribution, appetite, markers of inflammation, markers of vascular function, gut hormones, circulating endocannabinoids, and adipokine concentrations. Safety and tolerability end points were also evaluated.
RESULTS Compared with placebo, THCV significantly decreased fasting plasma glucose (estimated treatment difference [ETD] = −1.2 mmol/L; P < 0.05) and improved pancreatic β-cell function (HOMA2 β-cell function [ETD = −44.51 points; P < 0.01]), adiponectin (ETD = −5.9 × 106 pg/mL; P < 0.01), and apolipoprotein A (ETD = −6.02 μmol/L; P < 0.05), although plasma HDL was unaffected. Compared with baseline (but not placebo), CBD decreased resistin (−898 pg/ml; P < 0.05) and increased glucose-dependent insulinotropic peptide (21.9 pg/ml; P < 0.05). None of the combination treatments had a significant impact on end points. CBD and THCV were well tolerated.
CONCLUSIONS THCV could represent a new therapeutic agent in glycemic control in subjects with type 2 diabetes
Revisiting the Zingiberales: Using Multiplexed Exon Capture to Resolve Ancient and Recent Phylogenetic Splits in a Charismatic Plant Lineage
The Zingiberales are an iconic order of monocotyledonous plants comprising eight families with distinctive and diverse floral morphologies and representing an important ecological element of tropical and subtropical forests. While the eight families are demonstrated to be monophyletic, phylogenetic relationships among these families remain unresolved. Neither combined morphological and molecular studies nor recent attempts to resolve family relationships using sequence data from whole plastomes has resulted in a well-supported, family-level phylogenetic hypothesis of relationships. Here we approach this challenge by leveraging the complete genome of one member of the order, Musa acuminata, together with transcriptome information from each of the other seven families to design a set of nuclear loci that can be enriched from highly divergent taxa with a single array-based capture of indexed genomic DNA. A total of 494 exons from 418 nuclear genes were captured for 53 ingroup taxa. The entire plastid genome was also captured for the same 53 taxa. Of the total genes captured, 308 nuclear and 68 plastid genes were used for phylogenetic estimation. The concatenated plastid and nuclear dataset supports the position of Musaceae as sister to the remaining seven families. Moreover, the combined dataset recovers known intra- and inter-family phylogenetic relationships with generally high bootstrap support. This is a flexible and cost effective method that gives the broader plant biology community a tool for generating phylogenomic scale sequence data in non-model systems at varying evolutionary depths
Association of FCGR3A and FCGR3B haplotypes with rheumatoid arthritis and primary Sjögren's syndrome [POSTER PRESENTATION]
Background
Rheumatoid arthritis (RA) is an autoimmune disease that is thought to arise from a complex interaction between multiple genetic factors and environmental triggers. We have previously demonstrated an association between a Fc gamma receptor (FcγR) haplotype and RA in a cross-sectional cohort of RA patients. We have sought to confirm this association in an inception cohort of RA patients and matched controls. We also extended our study to investigate a second autoanti-body associated rheumatic disease, primary Sjögren's syndrome (PSS).
Methods
The FCGR3A-158F/V and FCGR3B-NA1/NA2 functional polymorphisms were examined for association in an inception cohort of RA patients (n = 448), and a well-characterised PSS cohort (n = 83) from the United Kingdom. Pairwise disequilibrium coefficients (D') were calculated in 267 Blood Service healthy controls. The EHPlus program was used to estimate haplotype frequencies for patients and controls and to determine whether significant linkage disequilibrium was present. A likelihood ratio test is performed to test for differences between the haplotype frequencies in cases and controls. A permutation procedure implemented in this program enabled 1000 permutations to be performed on all haplotype associations to assess significance.
Results
There was significant linkage disequilibrium between FCGR3A and FCGR3B (D' = -0.445, P = 0.001). There was no significant difference in the FCGR3A or FCGR3B allele or genotype frequencies in the RA or PSS patients compared with controls. However, there was a significant difference in the FCGR3A-FCGR3B haplotype distributions with increased homozygosity for the FCGR3A-FCGR3B 158V-NA2 haplotype in both our inception RA cohort (odds ratio = 2.15, 95% confidence interval = 1.1–4.2 P = 0.027) and PSS (odds ratio = 2.83, 95% confidence interval = 1.0–8.2, P = 0.047) compared with controls. The reference group for these analyses comprised individuals who did not possess a copy of the FCGR3A-FCGR3B 158V-NA2 haplotype.
Conclusions
We have confirmed our original findings of association between the FCGR3A-FCGR3B 158V-NA2 haplotype and RA in a new inception cohort of RA patients. This suggests that there may be an RA-susceptibility gene at this locus. The significant increased frequency of an identical haplotype in PSS suggests the FcγR genetic locus may contribute to the pathogenesis of diverse autoantibody-mediated rheumatic diseases
Exercise Training Reduces Liver Fat and Increases Rates of VLDL Clearance, but not VLDL Production in NAFLD
Context Randomised controlled trials in non-alcoholic fatty liver disease (NAFLD) have shown that regular exercise, even without calorie restriction, reduces liver steatosis. A previous study has shown that 16 weeks supervised exercise training in NAFLD did not affect total VLDL kinetics.
Objective To determine the effect of exercise training on intrahepatocellular fat (IHCL) and the kinetics of large triglyceride-(TG)-rich VLDL1 and smaller denser VLDL2 which has a lower TG content.
Design A 16 week randomised controlled trial.
Patients 27 sedentary patients with NAFLD.
Intervention Supervised exercise with moderate-intensity aerobic exercise or conventional lifestyle advice (control).
Main outcome Very low density lipoprotein1 (VLDL1) and VLDL2-TG and apolipoproteinB (apoB) kinetics investigated using stable isotopes before and after the intervention.
Results In the exercise group VO2max increased by 31±6% (mean±SEM) and IHCL decreased from 19.6% (14.8, 30.0) to 8.9% (5.4, 17.3) (median (IQR)) with no significant change in VO2max or IHCL in the control group (change between groups p<0.001 and p=0.02, respectively). Exercise training increased VLDL1-TG and apoB fractional catabolic rates, a measure of clearance, (change between groups p=0.02 and p=0.01, respectively), and VLDL1-apoB production rate (change between groups p=0.006), with no change in VLDL1 -TG production rate. Plasma TG did not change in either group.
Conclusion An increased clearance of VLDL1 may contribute to the significant decrease in liver fat following 16 weeks of exercise in NAFLD. A longer duration or higher intensity exercise interventions may be needed to lower plasma TG and VLDL production rate
GA Pilot Perceptions of Speech Systems to Transcribe and Submit PIREPs
Flying into hazardous weather can be a cause of aviation incidents and accidents. Accidents involving general aviation (GA) pilots who are not instrument rated who fly into instrument meteorological conditions (IMC) are often fatal. Pilot weather reports (PIREPs) can increase the accuracy and timeliness of current and forecasted weather conditions. They are an essential tool used by pilots to avoid flying into hazardous weather as well as meteorologists to develop and update aviation forecasts. Thus, a large number of accurate PIREPs with the best source of current weather coming from pilots and air traffic controllers are needed. Pilots are often unable to make PIREPs because of workload in the cockpit or because it is cumbersome to leave the air traffic control (ATC) frequency to contact flight the flight service station (FSS). Currently, air traffic controllers must solicit and disseminate PIREPs. However, air traffic controllers’ primary obligation is to provide traffic separation and traffic alerts. During poor weather, when PIREPs are needed the most, controllers are often too busy to solicit and disseminate PIREPs (NTSB, 2017a). This study administered a descriptive survey to inquire about how likely pilots would be to use a speech recognition system (SRS) to transcribe and submit PIREPs automatically while flying in three distinct flight regimes: instrument flight rules (IFR), visual flight rules (VFR) with flight following, and VFR without flight following. The survey employed cross-section design and included Likert scale questions. For each flight regime, additional information was obtained through an open-ended follow-up question. The Likert scale responses indicated that pilots were neutral about using a SRS to transcribe and submit PIREPs in each flight regime.Spradley’s (1979) domain analysis was used to identify common themes and patterns from the open-ended responses. Major findings from flying IFR were that pilots found it easier to speak directly to air traffic control, or pilots were too busy to submit PIREPs while flying IFR. Major findings from flying VFR with flight following were that pilots thought it was easier to report PIREPs directly to air traffic control or to a flight service station, and it was more accurate to report PIREPs directly to an aviation professional. However, they were willing to try a SRS. Major findings from flying VFR without flight following were that pilots wanted the opportunity to review a PIREP submission for accuracy and were willing to try the system. Significant differences were determined by making a comparison between the three groups
Initial State Interactions for -Proton Radiative Capture
The effects of the initial state interactions on the radiative
capture branching ratios are examined and found to be quite sizable. A general
coupled-channel formalism for both strong and electromagnetic channels using a
particle basis is presented, and applied to all the low energy data
with the exception of the {\it 1s} atomic level shift. Satisfactory fits are
obtained using vertex coupling constants for the electromagnetic channels that
are close to their expected SU(3) values.Comment: 16 pages, uses revte
Quantum correlations in Newtonian space and time: arbitrarily fast communication or nonlocality
We investigate possible explanations of quantum correlations that satisfy the
principle of continuity, which states that everything propagates gradually and
continuously through space and time. In particular, following [J.D. Bancal et
al, Nature Physics 2012], we show that any combination of local common causes
and direct causes satisfying this principle, i.e. propagating at any finite
speed, leads to signalling. This is true even if the common and direct causes
are allowed to propagate at a supraluminal-but-finite speed defined in a
Newtonian-like privileged universal reference frame. Consequently, either there
is supraluminal communication or the conclusion that Nature is nonlocal (i.e.
discontinuous) is unavoidable.Comment: It is an honor to dedicate this article to Yakir Aharonov, the master
of quantum paradoxes. Version 2 contains some more references and a clarified
conclusio
Darkness visible: reflections on underground ecology
1 Soil science and ecology have developed independently, making it difficult for ecologists to contribute to urgent current debates on the destruction of the global soil resource and its key role in the global carbon cycle. Soils are believed to be exceptionally biodiverse parts of ecosystems, a view confirmed by recent data from the UK Soil Biodiversity Programme at Sourhope, Scotland, where high diversity was a characteristic of small organisms, but not of larger ones. Explaining this difference requires knowledge that we currently lack about the basic biology and biogeography of micro-organisms. 2 It seems inherently plausible that the high levels of biological diversity in soil play some part in determining the ability of soils to undertake ecosystem-level processes, such as carbon and mineral cycling. However, we lack conceptual models to address this issue, and debate about the role of biodiversity in ecosystem processes has centred around the concept of functional redundancy, and has consequently been largely semantic. More precise construction of our experimental questions is needed to advance understanding. 3 These issues are well illustrated by the fungi that form arbuscular mycorrhizas, the Glomeromycota. This ancient symbiosis of plants and fungi is responsible for phosphate uptake in most land plants, and the phylum is generally held to be species-poor and non-specific, with most members readily colonizing any plant species. Molecular techniques have shown both those assumptions to be unsafe, raising questions about what factors have promoted diversification in these fungi. One source of this genetic diversity may be functional diversity. 4 Specificity of the mycorrhizal interaction between plants and fungi would have important ecosystem consequences. One example would be in the control of invasiveness in introduced plant species: surprisingly, naturalized plant species in Britain are disproportionately from mycorrhizal families, suggesting that these fungi may play a role in assisting invasion. 5 What emerges from an attempt to relate biodiversity and ecosystem processes in soil is our extraordinary ignorance about the organisms involved. There are fundamental questions that are now answerable with new techniques and sufficient will, such as how biodiverse are natural soils? Do microbes have biogeography? Are there rare or even endangered microbes
- …