21,990 research outputs found

    Holonomy observables in Ponzano-Regge type state sum models

    Get PDF
    We study observables on group elements in the Ponzano-Regge model. We show that these observables have a natural interpretation in terms of Feynman diagrams on a sphere and contrast them to the well studied observables on the spin labels. We elucidate this interpretation by showing how they arise from the no-gravity limit of the Turaev-Viro model and Chern-Simons theory.Comment: 15 pages, 2 figure

    Efficient quantum key distribution secure against no-signalling eavesdroppers

    Get PDF
    By carrying out measurements on entangled states, two parties can generate a secret key which is secure not only against an eavesdropper bound by the laws of quantum mechanics, but also against a hypothetical "post-quantum" eavesdroppers limited by the no-signalling principle only. We introduce a family of quantum key distribution protocols of this type, which are more efficient than previous ones, both in terms of key rate and noise resistance. Interestingly, the best protocols involve large number of measurements. We show that in the absence of noise, these protocols can yield one secret bit per entanglement bit, implying that the key rates in the no-signalling post-quantum scenario are comparable to the key rates in usual quantum key distribution.Comment: 11 pages, 2 color figures. v2: minor modifications, added references, added note on the relation to quant-ph/060604

    Resolving environmental drivers of microbial community structure in Antarctic soils

    Get PDF
    Antarctic soils are extremely cold, dry, and oligotrophic, yet harbour surprisingly high bacterial diversity. The severity of environmental conditions has constrained the development of multi-trophic communities, and species richness and distribution is thought to be driven primarily by abiotic factors. Sites in northern and southern Victoria Land were sampled for bacterial community structure and soil physicochemical properties in conjunction with the US and New Zealand Latitudinal Gradient Project. Bacterial community structure was determined using a high-resolution molecular fingerprinting method for 80 soil samples from Taylor Valley and Cape Hallett sites which are separated by five degrees of latitude and have distinct soil chemistry. Taylor Valley is part of the McMurdo Dry Valleys, while Cape Hallett is the site of a penguin rookery and contains ornithogenic soils. The influence of soil moisture, pH, conductivity, ammonia, nitrate, total nitrogen and organic carbon on community structure was revealed using Spearman rank correlation, Mantel test, and principal components analysis. High spatial variability was detected in bacterial communities and community structure was correlated with soil moisture and pH. Both unique and shared bacterial community members were detected at Taylor Valley and Cape Hallett despite the considerable distance between the sites

    A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity

    Get PDF
    Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).Agence Nationale de la Recherche - ANR-10-BTBR-04; European Regional Development Fund; Fundacao para a Ciencia e a Tecnologia - SFRH/BPD/107878/2015, UID/Multi/04326/2016, UID/Multi/04326/2019; Brittany Region;info:eu-repo/semantics/publishedVersio

    Spin Foam Models of Matter Coupled to Gravity

    Get PDF
    We construct a class of spin foam models describing matter coupled to gravity, such that the gravitational sector is described by the unitary irreducible representations of the appropriate symmetry group, while the matter sector is described by the finite-dimensional irreducible representations of that group. The corresponding spin foam amplitudes in the four-dimensional gravity case are expressed in terms of the spin network amplitudes for pentagrams with additional external and internal matter edges. We also give a quantum field theory formulation of the model, where the matter degrees of freedom are described by spin network fields carrying the indices from the appropriate group representation. In the non-topological Lorentzian gravity case, we argue that the matter representations should be appropriate SO(3) or SO(2) representations contained in a given Lorentz matter representation, depending on whether one wants to describe a massive or a massless matter field. The corresponding spin network amplitudes are given as multiple integrals of propagators which are matrix spherical functions.Comment: 30 pages, 9 figures, further remarks and references added. Version to appear in Class. Quant. Gra

    Ultraslow Electron Spin Dynamics in GaAs Quantum Wells Probed by Optically Pumped NMR

    Full text link
    Optically pumped nuclear magnetic resonance (OPNMR) measurements were performed in two different electron-doped multiple quantum well samples near the fractional quantum Hall effect ground state nu=1/3. Below 0.5K, the spectra provide evidence that spin-reversed charged excitations of the nu=1/3 ground state are localized over the NMR time scale of ~40 microseconds. Furthermore, by varying NMR pulse parameters, the electron spin temperature (as measured by the Knight shift) could be driven above the lattice temperature, which shows that the value of the electron spin-lattice relaxation time lies between 100 microseconds and 500 milliseconds at nu=1/3.Comment: 6 pages (REVTEX), 6 eps figures embedded in text; published version; minor changes to match published versio

    The Vampire and the FOOL

    Full text link
    This paper presents new features recently implemented in the theorem prover Vampire, namely support for first-order logic with a first class boolean sort (FOOL) and polymorphic arrays. In addition to having a first class boolean sort, FOOL also contains if-then-else and let-in expressions. We argue that presented extensions facilitate reasoning-based program analysis, both by increasing the expressivity of first-order reasoners and by gains in efficiency

    Preparing multi-partite entanglement of photons and matter qubits

    Full text link
    We show how to make event-ready multi-partite entanglement between qubits which may be encoded on photons or matter systems. Entangled states of matter systems, which can also act as single photon sources, can be generated using the entangling operation presented in quant-ph/0408040. We show how to entangle such sources with photon qubits, which may be encoded in the dual rail, polarization or time-bin degrees of freedom. We subsequently demonstrate how projective measurements of the matter qubits can be used to create entangled states of the photons alone. The state of the matter qubits is inherited by the generated photons. Since the entangling operation can be used to generate cluster states of matter qubits for quantum computing, our procedure enables us to create any (entangled) photonic quantum state that can be written as the outcome of a quantum computer.Comment: 10 pages, 4 figures; to appear in Journal of Optics
    • 

    corecore