87 research outputs found

    On the theory of composition in physics

    Full text link
    We develop a theory for describing composite objects in physics. These can be static objects, such as tables, or things that happen in spacetime (such as a region of spacetime with fields on it regarded as being composed of smaller such regions joined together). We propose certain fundamental axioms which, it seems, should be satisfied in any theory of composition. A key axiom is the order independence axiom which says we can describe the composition of a composite object in any order. Then we provide a notation for describing composite objects that naturally leads to these axioms being satisfied. In any given physical context we are interested in the value of certain properties for the objects (such as whether the object is possible, what probability it has, how wide it is, and so on). We associate a generalized state with an object. This can be used to calculate the value of those properties we are interested in for for this object. We then propose a certain principle, the composition principle, which says that we can determine the generalized state of a composite object from the generalized states for the components by means of a calculation having the same structure as the description of the generalized state. The composition principle provides a link between description and prediction.Comment: 23 pages. To appear in a festschrift for Samson Abramsky edited by Bob Coecke, Luke Ong, and Prakash Panangade

    Chapter 5 - Drivers, trends and mitigation

    Get PDF
    Chapter 5 analyzes the anthropogenic greenhouse gas (GHG) emission trends until the present and the main drivers that explain those trends. The chapter uses different perspectives to analyze past GHG-emissions trends, including aggregate emissions flows and per capita emissions, cumulative emissions, sectoral emissions, and territory-based vs. consumption- based emissions. In all cases, global and regional trends are analyzed. Where appropriate, the emission trends are contextualized with long-term historic developments in GHG emissions extending back to 1750

    Information Invariance and Quantum Probabilities

    Full text link
    We consider probabilistic theories in which the most elementary system, a two-dimensional system, contains one bit of information. The bit is assumed to be contained in any complete set of mutually complementary measurements. The requirement of invariance of the information under a continuous change of the set of mutually complementary measurements uniquely singles out a measure of information, which is quadratic in probabilities. The assumption which gives the same scaling of the number of degrees of freedom with the dimension as in quantum theory follows essentially from the assumption that all physical states of a higher dimensional system are those and only those from which one can post-select physical states of two-dimensional systems. The requirement that no more than one bit of information (as quantified by the quadratic measure) is contained in all possible post-selected two-dimensional systems is equivalent to the positivity of density operator in quantum theory.Comment: 8 pages, 1 figure. This article is dedicated to Pekka Lahti on the occasion of his 60th birthday. Found. Phys. (2009

    NMR and NQR Fluctuation Effects in Layered Superconductors

    Full text link
    We study the effect of thermal fluctuations of the s-wave order parameter of a quasi two dimensional superconductor on the nuclear spin relaxation rate near the transition temperature Tc. We consider both the effects of the amplitude fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations in weakly coupled layered superconductors. In the treatment of the amplitude fluctuations we employ the Gaussian approximation and evaluate the longitudinal relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair breaking effects, using the static pair fluctuation propagator D. The increase in 1/T1 due to pair breaking in D is overcompensated by the decrease arising from the single particle Green's functions. The result is a strong effect on 1/T1 for even a small amount of pair breaking. The phase fluctuations are described in terms of dynamical BKT excitations in the form of pancake vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field fluctuations caused by the translational motion of VA excitations on 1/T1 and on the transverse relaxation rate 1/T2 on both sides of the BKT transitation temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly on the diffusion constant that governs the motion of free and bound vortices as well as the annihilation of VA pairs. We discuss the relaxation rates for real multilayer systems where the diffusion constant can be small and thus increase the lifetime of a VA pair, leading to an enhancement of the rates. We also discuss in some detail the experimental feasibility of observing the effects of amplitude fluctuations in layered s-wave superconductors such as the dichalcogenides and the effects of phase fluctuations in s- or d-wave superconductors such as the layered cuprates.Comment: 38 pages, 12 figure

    Measurement-based quantum foundations

    Full text link
    I show that quantum theory is the only probabilistic framework that permits arbitrary processes to be emulated by sequences of local measurements. This supports the view that, contrary to conventional wisdom, measurement should not be regarded as a complex phenomenon in need of a dynamical explanation but rather as a primitive -- and perhaps the only primitive -- operation of the theory.Comment: 8 pages, version to appear in Found. Phy

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Causes of maladaptation

    Get PDF
    Evolutionary biologists tend to approach the study of the natural world within a framework of adaptation, inspired perhaps by the power of natural selection to produce fitness advantages that drive population persistence and biological diversity. In contrast, evolution has rarely been studied through the lens of adaptation's complement, maladaptation. This contrast is surprising because maladaptation is a prevalent feature of evolution: population trait values are rarely distributed optimally; local populations often have lower fitness than imported ones; populations decline; and local and global extinctions are common. Yet we lack a general framework for understanding maladaptation; for instance in terms of distribution, severity, and dynamics. Similar uncertainties apply to the causes of maladaptation. We suggest that incorporating maladaptation-based perspectives into evolutionary biology would facilitate better understanding of the natural world. Approaches within a maladaptation framework might be especially profitable in applied evolution contexts – where reductions in fitness are common. Toward advancing a more balanced study of evolution, here we present a conceptual framework describing causes of maladaptation. As the introductory article for a Special Feature on maladaptation, we also summarize the studies in this Issue, highlighting the causes of maladaptation in each study. We hope that our framework and the papers in this Special Issue will help catalyze the study of maladaptation in applied evolution, supporting greater understanding of evolutionary dynamics in our rapidly changing world

    Rho GTPase function in flies: insights from a developmental and organismal perspective.

    Get PDF
    Morphogenesis is a key event in the development of a multicellular organism and is reliant on coordinated transcriptional and signal transduction events. To establish the segmented body plan that underlies much of metazoan development, individual cells and groups of cells must respond to exogenous signals with complex movements and shape changes. One class of proteins that plays a pivotal role in the interpretation of extracellular cues into cellular behavior is the Rho family of small GTPases. These molecular switches are essential components of a growing number of signaling pathways, many of which regulate actin cytoskeletal remodeling. Much of our understanding of Rho biology has come from work done in cell culture. More recently, the fruit fly Drosophila melanogaster has emerged as an excellent genetic system for the study of these proteins in a developmental and organismal context. Studies in flies have greatly enhanced our understanding of pathways involving Rho GTPases and their roles in development

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy

    Pathogenic Germline Variants in 10,389 Adult Cancers

    Get PDF
    We conducted the largest investigation of predisposition variants in cancer to date, discovering 853 pathogenic or likely pathogenic variants in 8% of 10,389 cases from 33 cancer types. Twenty-one genes showed single or cross-cancer associations, including novel associations of SDHA in melanoma and PALB2 in stomach adenocarcinoma. The 659 predisposition variants and 18 additional large deletions in tumor suppressors, including ATM, BRCA1, and NF1, showed low gene expression and frequent (43%) loss of heterozygosity or biallelic two-hit events. We also discovered 33 such variants in oncogenes, including missenses in MET, RET, and PTPN11 associated with high gene expression. We nominated 47 additional predisposition variants from prioritized VUSs supported by multiple evidences involving case-control frequency, loss of heterozygosity, expression effect, and co-localization with mutations and modified residues. Our integrative approach links rare predisposition variants to functional consequences, informing future guidelines of variant classification and germline genetic testing in cancer. A pan-cancer analysis identifies hundreds of predisposing germline variants
    • …
    corecore