36 research outputs found

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    Background Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI <18·5 kg/m2) and obesity (BMI ≥30 kg/m2). For schoolaged children and adolescents, we report thinness (BMI <2 SD below the median of the WHO growth reference) and obesity (BMI >2 SD above the median). Findings From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesit

    Catálogo Taxonômico da Fauna do Brasil: setting the baseline knowledge on the animal diversity in Brazil

    Get PDF
    The limited temporal completeness and taxonomic accuracy of species lists, made available in a traditional manner in scientific publications, has always represented a problem. These lists are invariably limited to a few taxonomic groups and do not represent up-to-date knowledge of all species and classifications. In this context, the Brazilian megadiverse fauna is no exception, and the Catálogo Taxonômico da Fauna do Brasil (CTFB) (http://fauna.jbrj.gov.br/), made public in 2015, represents a database on biodiversity anchored on a list of valid and expertly recognized scientific names of animals in Brazil. The CTFB is updated in near real time by a team of more than 800 specialists. By January 1, 2024, the CTFB compiled 133,691 nominal species, with 125,138 that were considered valid. Most of the valid species were arthropods (82.3%, with more than 102,000 species) and chordates (7.69%, with over 11,000 species). These taxa were followed by a cluster composed of Mollusca (3,567 species), Platyhelminthes (2,292 species), Annelida (1,833 species), and Nematoda (1,447 species). All remaining groups had less than 1,000 species reported in Brazil, with Cnidaria (831 species), Porifera (628 species), Rotifera (606 species), and Bryozoa (520 species) representing those with more than 500 species. Analysis of the CTFB database can facilitate and direct efforts towards the discovery of new species in Brazil, but it is also fundamental in providing the best available list of valid nominal species to users, including those in science, health, conservation efforts, and any initiative involving animals. The importance of the CTFB is evidenced by the elevated number of citations in the scientific literature in diverse areas of biology, law, anthropology, education, forensic science, and veterinary science, among others

    Diretrizes Brasileiras de Medidas da Pressão Arterial Dentro e Fora do Consultório – 2023

    Get PDF
    Hypertension is one of the primary modifiable risk factors for morbidity and mortality worldwide, being a major risk factor for coronary artery disease, stroke, and kidney failure. Furthermore, it is highly prevalent, affecting more than one-third of the global population. Blood pressure measurement is a MANDATORY procedure in any medical care setting and is carried out by various healthcare professionals. However, it is still commonly performed without the necessary technical care. Since the diagnosis relies on blood pressure measurement, it is clear how important it is to handle the techniques, methods, and equipment used in its execution with care. It should be emphasized that once the diagnosis is made, all short-term, medium-term, and long-term investigations and treatments are based on the results of blood pressure measurement. Therefore, improper techniques and/or equipment can lead to incorrect diagnoses, either underestimating or overestimating values, resulting in inappropriate actions and significant health and economic losses for individuals and nations. Once the correct diagnosis is made, as knowledge of the importance of proper treatment advances, with the adoption of more detailed normal values and careful treatment objectives towards achieving stricter blood pressure goals, the importance of precision in blood pressure measurement is also reinforced. Blood pressure measurement (described below) is usually performed using the traditional method, the so-called casual or office measurement. Over time, alternatives have been added to it, through the use of semi-automatic or automatic devices by the patients themselves, in waiting rooms or outside the office, in their own homes, or in public spaces. A step further was taken with the use of semi-automatic devices equipped with memory that allow sequential measurements outside the office (ABPM; or HBPM) and other automatic devices that allow programmed measurements over longer periods (HBPM). Some aspects of blood pressure measurement can interfere with obtaining reliable results and, consequently, cause harm in decision-making. These include the importance of using average values, the variation in blood pressure during the day, and short-term variability. These aspects have encouraged the performance of a greater number of measurements in various situations, and different guidelines have advocated the use of equipment that promotes these actions. Devices that perform HBPM or ABPM, which, in addition to allowing greater precision, when used together, detect white coat hypertension (WCH), masked hypertension (MH), sleep blood pressure alterations, and resistant hypertension (RHT) (defined in Chapter 2 of this guideline), are gaining more and more importance. Taking these details into account, we must emphasize that information related to diagnosis, classification, and goal setting is still based on office blood pressure measurement, and for this reason, all attention must be given to the proper execution of this procedure.La hipertensión arterial (HTA) es uno de los principales factores de riesgo modificables para la morbilidad y mortalidad en todo el mundo, siendo uno de los mayores factores de riesgo para la enfermedad de las arterias coronarias, el accidente cerebrovascular (ACV) y la insuficiencia renal. Además, es altamente prevalente y afecta a más de un tercio de la población mundial. La medición de la presión arterial (PA) es un procedimiento OBLIGATORIO en cualquier atención médica o realizado por diferentes profesionales de la salud. Sin embargo, todavía se realiza comúnmente sin los cuidados técnicos necesarios. Dado que el diagnóstico se basa en la medición de la PA, es claro el cuidado que debe haber con las técnicas, los métodos y los equipos utilizados en su realización. Debemos enfatizar que una vez realizado el diagnóstico, todas las investigaciones y tratamientos a corto, mediano y largo plazo se basan en los resultados de la medición de la PA. Por lo tanto, las técnicas y/o equipos inadecuados pueden llevar a diagnósticos incorrectos, subestimando o sobreestimando valores y resultando en conductas inadecuadas y pérdidas significativas para la salud y la economía de las personas y las naciones. Una vez realizado el diagnóstico correcto, a medida que avanza el conocimiento sobre la importancia del tratamiento adecuado, con la adopción de valores de normalidad más detallados y objetivos de tratamiento más cuidadosos hacia metas de PA más estrictas, también se refuerza la importancia de la precisión en la medición de la PA. La medición de la PA (descrita a continuación) generalmente se realiza mediante el método tradicional, la llamada medición casual o de consultorio. Con el tiempo, se han agregado alternativas a través del uso de dispositivos semiautomáticos o automáticos por parte del propio paciente, en salas de espera o fuera del consultorio, en su propia residencia o en espacios públicos. Se dio un paso más con el uso de dispositivos semiautomáticos equipados con memoria que permiten mediciones secuenciales fuera del consultorio (AMPA; o MRPA) y otros automáticos que permiten mediciones programadas durante períodos más largos (MAPA). Algunos aspectos en la medición de la PA pueden interferir en la obtención de resultados confiables y, en consecuencia, causar daños en las decisiones a tomar. Estos incluyen la importancia de usar valores promedio, la variación de la PA durante el día y la variabilidad a corto plazo. Estos aspectos han alentado la realización de un mayor número de mediciones en diversas situaciones, y diferentes pautas han abogado por el uso de equipos que promuevan estas acciones. Los dispositivos que realizan MRPA o MAPA, que además de permitir una mayor precisión, cuando se usan juntos, detectan la hipertensión de bata blanca (HBB), la hipertensión enmascarada (HM), las alteraciones de la PA durante el sueño y la hipertensión resistente (HR) (definida en el Capítulo 2 de esta guía), están ganando cada vez más importancia. Teniendo en cuenta estos detalles, debemos enfatizar que la información relacionada con el diagnóstico, la clasificación y el establecimiento de objetivos todavía se basa en la medición de la presión arterial en el consultorio, y por esta razón, se debe prestar toda la atención a la ejecución adecuada de este procedimiento.A hipertensão arterial (HA) é um dos principais fatores de risco modificáveis para morbidade e mortalidade em todo o mundo, sendo um dos maiores fatores de risco para doença arterial coronária, acidente vascular cerebral (AVC) e insuficiência renal. Além disso, é altamente prevalente e atinge mais de um terço da população mundial. A medida da PA é procedimento OBRIGATÓRIO em qualquer atendimento médico ou realizado por diferentes profissionais de saúde. Contudo, ainda é comumente realizada sem os cuidados técnicos necessários. Como o diagnóstico se baseia na medida da PA, fica claro o cuidado que deve haver com as técnicas, os métodos e os equipamentos utilizados na sua realização. Deve-se reforçar que, feito o diagnóstico, toda a investigação e os tratamentos de curto, médio e longo prazos são feitos com base nos resultados da medida da PA. Assim, técnicas e/ou equipamentos inadequados podem levar a diagnósticos incorretos, tanto subestimando quanto superestimando valores e levando a condutas inadequadas e grandes prejuízos à saúde e à economia das pessoas e das nações. Uma vez feito o diagnóstico correto, na medida em que avança o conhecimento da importância do tratamento adequado, com a adoção de valores de normalidade mais detalhados e com objetivos de tratamento mais cuidadosos no sentido do alcance de metas de PA mais rigorosas, fica também reforçada a importância da precisão na medida da PA. A medida da PA (descrita a seguir) é habitualmente feita pelo método tradicional, a assim chamada medida casual ou de consultório. Ao longo do tempo, foram agregadas alternativas a ela, mediante o uso de equipamentos semiautomáticos ou automáticos pelo próprio paciente, nas salas de espera ou fora do consultório, em sua própria residência ou em espaços públicos. Um passo adiante foi dado com o uso de equipamentos semiautomáticos providos de memória que permitem medidas sequenciais fora do consultório (AMPA; ou MRPA) e outros automáticos que permitem medidas programadas por períodos mais prolongados (MAPA). Alguns aspectos na medida da PA podem interferir na obtenção de resultados fidedignos e, consequentemente, causar prejuízo nas condutas a serem tomadas. Entre eles, estão: a importância de serem utilizados valores médios, a variação da PA durante o dia e a variabilidade a curto prazo. Esses aspectos têm estimulado a realização de maior número de medidas em diversas situações, e as diferentes diretrizes têm preconizado o uso de equipamentos que favoreçam essas ações. Ganham cada vez mais espaço os equipamentos que realizam MRPA ou MAPA, que, além de permitirem maior precisão, se empregados em conjunto, detectam a HA do avental branco (HAB), HA mascarada (HM), alterações da PA no sono e HA resistente (HAR) (definidos no Capítulo 2 desta diretriz). Resguardados esses detalhes, devemos ressaltar que as informações relacionadas a diagnóstico, classificação e estabelecimento de metas ainda são baseadas na medida da PA de consultório e, por esse motivo, toda a atenção deve ser dada à realização desse procedimento

    Educomunicação e suas áreas de intervenção: Novos paradigmas para o diálogo intercultural

    Get PDF
    oai:omp.abpeducom.org.br:publicationFormat/1O material aqui divulgado representa, em essência, a contribuição do VII Encontro Brasileiro de Educomunicação ao V Global MIL Week, da UNESCO, ocorrido na ECA/USP, entre 3 e 5 de novembro de 2016. Estamos diante de um conjunto de 104 papers executivos, com uma média de entre 7 e 10 páginas, cada um. Com este rico e abundante material, chegamos ao sétimo e-book publicado pela ABPEducom, em seus seis primeiros anos de existência. A especificidade desta obra é a de trazer as “Áreas de Intervenção” do campo da Educomunicação, colocando-as a serviço de uma meta essencial ao agir educomunicativo: o diálogo intercultural, trabalhado na linha do tema geral do evento internacional: Media and Information Literacy: New Paradigms for Intercultural Dialogue

    Worldwide trends in underweight and obesity from 1990 to 2022 : a pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults

    Get PDF
    A list of authors and their affiliations appears online. A supplementary appendix is herewith attached.Background: Underweight and obesity are associated with adverse health outcomes throughout the life course. We estimated the individual and combined prevalence of underweight or thinness and obesity, and their changes, from 1990 to 2022 for adults and school-aged children and adolescents in 200 countries and territories. Methods: We used data from 3663 population-based studies with 222 million participants that measured height and weight in representative samples of the general population. We used a Bayesian hierarchical model to estimate trends in the prevalence of different BMI categories, separately for adults (age ≥20 years) and school-aged children and adolescents (age 5–19 years), from 1990 to 2022 for 200 countries and territories. For adults, we report the individual and combined prevalence of underweight (BMI 2 SD above the median). Findings: From 1990 to 2022, the combined prevalence of underweight and obesity in adults decreased in 11 countries (6%) for women and 17 (9%) for men with a posterior probability of at least 0·80 that the observed changes were true decreases. The combined prevalence increased in 162 countries (81%) for women and 140 countries (70%) for men with a posterior probability of at least 0·80. In 2022, the combined prevalence of underweight and obesity was highest in island nations in the Caribbean and Polynesia and Micronesia, and countries in the Middle East and north Africa. Obesity prevalence was higher than underweight with posterior probability of at least 0·80 in 177 countries (89%) for women and 145 (73%) for men in 2022, whereas the converse was true in 16 countries (8%) for women, and 39 (20%) for men. From 1990 to 2022, the combined prevalence of thinness and obesity decreased among girls in five countries (3%) and among boys in 15 countries (8%) with a posterior probability of at least 0·80, and increased among girls in 140 countries (70%) and boys in 137 countries (69%) with a posterior probability of at least 0·80. The countries with highest combined prevalence of thinness and obesity in school-aged children and adolescents in 2022 were in Polynesia and Micronesia and the Caribbean for both sexes, and Chile and Qatar for boys. Combined prevalence was also high in some countries in south Asia, such as India and Pakistan, where thinness remained prevalent despite having declined. In 2022, obesity in school-aged children and adolescents was more prevalent than thinness with a posterior probability of at least 0·80 among girls in 133 countries (67%) and boys in 125 countries (63%), whereas the converse was true in 35 countries (18%) and 42 countries (21%), respectively. In almost all countries for both adults and school-aged children and adolescents, the increases in double burden were driven by increases in obesity, and decreases in double burden by declining underweight or thinness. Interpretation: The combined burden of underweight and obesity has increased in most countries, driven by an increase in obesity, while underweight and thinness remain prevalent in south Asia and parts of Africa. A healthy nutrition transition that enhances access to nutritious foods is needed to address the remaining burden of underweight while curbing and reversing the increase in obesity.peer-reviewe

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
    corecore