693 research outputs found

    Entropic transport - A test bed for the Fick-Jacobs approximation

    Full text link
    Biased diffusive transport of Brownian particles through irregularly shaped, narrow confining quasi-one-dimensional structures is investigated. The complexity of the higher dimensional diffusive dynamics is reduced by means of the so-called Fick-Jacobs approximation, yielding an effective one-dimensional stochastic dynamics. Accordingly, the elimination of transverse, equilibrated degrees of freedom stemming from geometrical confinements and/or bottlenecks cause entropic potential barriers which the particles have to overcome when moving forward noisily. The applicability and the validity of the reduced kinetic description is tested by comparing the approximation with Brownian dynamics simulations in full configuration space. This non-equilibrium transport in such quasi-one-dimensional irregular structures implies for moderate-to-strong bias a characteristic violation of the Sutherland-Einstein fluctuation-dissipation relation.Comment: 15 pages, 6 figures ; Phil. Trans. R. Soc. A (2009), in pres

    Entropic Stochastic Resonance

    Get PDF
    We present a novel scheme for the appearance of Stochastic Resonance when the dynamics of a Brownian particle takes place in a confined medium. The presence of uneven boundaries, giving rise to an entropic contribution to the potential, may upon application of a periodic driving force result in an increase of the spectral amplification at an optimum value of the ambient noise level. This Entropic Stochastic Resonance (ESR), characteristic of small-scale systems, may constitute a useful mechanism for the manipulation and control of single-molecules and nano-devices.Comment: 4 pages, 3 figure

    Numerical study of multilayer adsorption on fractal surfaces

    Full text link
    We report a numerical study of van der Waals adsoprtion and capillary condensation effects on self-similar fractal surfaces. An assembly of uncoupled spherical pores with a power-law distributin of radii is used to model fractal surfaces with adjustable dimensions. We find that the commonly used fractal Frankel-Halsey-Hill equation systematically fails to give the correct dimension due to crossover effects, consistent with the findings of recent experiments. The effects of pore coupling and curvature dependent surface tension were also studied.Comment: 11 pages, 3 figure

    Mass fractionation of noble gases in synthetic methane hydrate : implications for naturally occurring gas hydrate dissociation

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Chemical Geology 339 (2013): 242-250, doi:10.1016/j.chemgeo.2012.09.033.As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean–atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.Partial support for this research was provided by Interagency Agreements DE-FE0002911 and DE-NT0006147 between the U.S. Geological Survey Gas Hydrates Project and the U.S. Department of Energy's Methane Hydrates Research and Development Program

    On the elastic constants of the zeolite chlorosodalite

    Get PDF
    The use of force-field based molecular modeling to predict the elastic constants of the zeolite chlorosodalite is described. Theoretical predictions of the on-axis and off-axis elastic constants strongly suggest that an error exists in the published elastic constants of the material. When the previous experimental data are corrected by transposing the published directional ultrasound velocities, excellent agreement is observed between the off-axis plots of sodalite produced by experiment and modeling. Further confirmation of the prediction is supplied by considering the Zener ratios of other inorganic materials that possess cubic symmetry. ©2006 American Institute of Physics

    Canterbury game industry action plan 2022

    Get PDF
    This report reviews the video game and interactive media industry landscape, and is intended for game studios, local and international investors in the games industry, regional policy makers, central government, local government agencies, Christchurch City Council, and sector stakeholders

    Do Leaf Cutting Ants Cut Undetected? Testing the Effect of Ant-Induced Plant Defences on Foraging Decisions in Atta colombica

    Get PDF
    Leaf-cutting ants (LCAs) are polyphagous, yet highly selective herbivores. The factors that govern their selection of food plants, however, remain poorly understood. We hypothesized that the induction of anti-herbivore defences by attacked food plants, which are toxic to either ants or their mutualistic fungus, should significantly affect the ants' foraging behaviour. To test this “induced defence hypothesis,” we used lima bean (Phaseolus lunatus), a plant that emits many volatile organic compounds (VOCs) upon herbivore attack with known anti-fungal or ant-repellent effects. Our results provide three important insights into the foraging ecology of LCAs. First, leaf-cutting by Atta ants can induce plant defences: Lima bean plants that were repeatedly exposed to foraging workers of Atta colombica over a period of three days emitted significantly more VOCs than undamaged control plants. Second, the level to which a plant has induced its anti-herbivore defences can affect the LCAs' foraging behaviour: In dual choice bioassays, foragers discriminated control plants from plants that have been damaged mechanically or by LCAs 24 h ago. In contrast, strong induction levels of plants after treatment with the plant hormone jasmonic acid or three days of LCA feeding strongly repelled LCA foragers relative to undamaged control plants. Third, the LCA-specific mode of damaging leaves allows them to remove larger quantities of leaf material before being recognized by the plant: While leaf loss of approximately 15% due to a chewing herbivore (coccinelid beetle) was sufficient to significantly increase VOC emission levels after 24 h, the removal of even 20% of a plant's leaf area within 20 min by LCAs did not affect its VOC emission rate after 24 h. Taken together, our results support the “induced defence hypothesis” and provide first empirical evidence that the foraging behaviour of LCAs is affected by the induction of plant defence responses

    High-angular and high-contrast VLTI observations from Y to M band with the Asgard instrumental suite

    Get PDF
    This is the final version. Available from SPIE via the DOI in this recordSPIE Astronomical Telescopes + Instrumentation 2022, 17 - 22 July 2022, Montreal, CanadaThe Very Large Telescope Interferometer is one of the most proficient observatories in the world for high angular resolution. Since its first observations, it has hosted several interferometric instruments operating in various bandwidths in the infrared. As a result, the VLTI yields countless discoveries and technological breakthroughs. We introduce to the VLTI the new concept of Asgard: an instrumental suite including four natively collaborating instruments: BIFROST, a stellar interferometer dedicated to the study of the formation of multiple systems; Hi- 5, a nulling interferometer dedicated to imaging young nearby planetary systems in the M band; HEIMDALLR, an all-in-one instrument performing both fringe tracking and stellar interferometry with the same optics; Baldr, a fibre-injection optimiser. These instruments share common goals and technologies. Thus, the idea of this suite is to make the instruments interoperable and complementary to deliver unprecedented sensitivity and accuracy from J to M bands. The interoperability of the Asgard instruments and their integration in the VLTI are the main challenges of this project. In this paper, we introduce the overall optical design of the Asgard suite, the different modules, and the main challenges ahead.European Union Horizon 2020Science and Technology Facilities Council (STFC)European Research Council (ERC

    In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses

    Get PDF
    The high prevalence of the Fusarium mycotoxins, deoxynivalenol (DON) and zearalenone (ZON) in animal feeds in mild climatic zones of Europe and North America results in considerable economic losses, as these toxins affect health and productivity particularly of pigs from all age groups. The use of mycotoxin adsorbents as feed additives is one of the most prominent approaches to reduce the risk for mycotoxicoses in farm animals, and to minimise carry-over of mycotoxins from contaminated feeds into foods of animal origin. Successful aflatoxin adsorption by means of different substances (phyllosilicate minerals, zeolites, activated charcoal, synthetic resins or yeast cell-wall-derived products) has been demonstrated in vivo and in vitro. However, attempts to adsorb DON and ZON have been less encouraging. Here we describe the adsorption capacity of a variety of potential binders, including compounds that have not been evaluated before, such as humic acids. All compounds were tested at realistic inclusion levels for their capacity to bind ZON and DON, using an in vitro method that resembles the different pH conditions in the gastro-intestinal tract of pigs. Mycotoxin adsorption was assessed by chemical methods and distinct bioassays, using specific markers of toxicity as endpoints of toxicity in cytological assays. Whereas none of the tested substances was able to bind DON in an appreciable percentage, some of the selected smectite clays, humic substances and yeast-wall derived products efficiently adsorbed ZON (>70%). Binding efficiency was indirectly confirmed by the reduction of toxicity in the in vitro bioassays. In conclusion, the presented test protocol allows the rapid screening of potential mycotoxin binders. Like other in vitro assays, the presented protocol combining chemical and biological assays cannot completely simulate the conditions of the gastro-intestinal tract, and hence in vivo experiments remain mandatory to assess the efficacy of mycotoxin binders under practical conditions
    corecore