853 research outputs found

    Closed Universes With Black Holes But No Event Horizons As a Solution to the Black Hole Information Problem

    Get PDF
    We show it is possible for the information paradox in black hole evaporation to be resolved classically. Using standard junction conditions, we attach the general closed spherically symmetric dust metric to a spacetime satisfying all standard energy conditions but with a single point future c-boundary. The resulting Omega Point spacetime, which has NO event horizons, nevertheless has black hole type trapped surfaces and hence black holes. But since there are no event horizons, information eventually escapes from the black holes. We show that a scalar quintessence field with an appropriate exponential potential near the final singularity would give rise to an Omega Point final singularity.Comment: 27 pages in LaTex2e, no figure

    Entropic Stochastic Resonance

    Get PDF
    We present a novel scheme for the appearance of Stochastic Resonance when the dynamics of a Brownian particle takes place in a confined medium. The presence of uneven boundaries, giving rise to an entropic contribution to the potential, may upon application of a periodic driving force result in an increase of the spectral amplification at an optimum value of the ambient noise level. This Entropic Stochastic Resonance (ESR), characteristic of small-scale systems, may constitute a useful mechanism for the manipulation and control of single-molecules and nano-devices.Comment: 4 pages, 3 figure

    Embedded-Cluster Calculations in a Numeric Atomic Orbital Density-Functional Theory Framework

    Get PDF
    We integrate the all-electron electronic structure code FHI-aims into the general ChemShell package for solid-state embedding (QM/MM) calculations. A major undertaking in this integration is the implementation of pseudopotential functionality into FHI-aims to describe cations at the QM/MM boundary through effective core potentials and therewith prevent spurious overpolarization of the electronic density. Based on numeric atomic orbital basis sets, FHI-aims offers particularly efficient access to exact exchange and second order perturbation theory, rendering the established QM/MM setup an ideal tool for hybrid and double-hybrid level DFT calculations of solid systems. We illustrate this capability by calculating the reduction potential of Fe in the Fe-substituted ZSM-5 zeolitic framework and the reaction energy profile for (photo-)catalytic water oxidation at TiO2(110).Comment: 12 pages, 4 figure

    Entropically-induced asymmetric passage times of charged tracers across corrugated channels

    Get PDF
    We analyze the diffusion of charged and neutral tracers suspended in an electrolyte embedded in a channel of varying cross section. Making use of systematic approximations, the diffusion equation governing the motion of tracers is mapped into an effective 1D equation describing the dynamics along the longitudinal axis of the channel where its varying-section is encoded as an effective entropic potential. This simplified approach allows us to characterize tracer diffusion under generic confinement by measuring their mean first passage time (MFPT). In particular, we show that the interplay between geometrical confinement and electrostatic interactions strongly affect the MFTP of tracers across corrugated channels hence leading to alternative means to control tracers translocation across charged pores. Finally, our results show that the MFPTs of a charged tracer in opposite directions along an asymmetric channel may differ We expect our results to be relevant for biological as well synthetic devices whose dynamics is controlled by the detection of diluted tracer

    On the elastic constants of the zeolite chlorosodalite

    Get PDF
    The use of force-field based molecular modeling to predict the elastic constants of the zeolite chlorosodalite is described. Theoretical predictions of the on-axis and off-axis elastic constants strongly suggest that an error exists in the published elastic constants of the material. When the previous experimental data are corrected by transposing the published directional ultrasound velocities, excellent agreement is observed between the off-axis plots of sodalite produced by experiment and modeling. Further confirmation of the prediction is supplied by considering the Zener ratios of other inorganic materials that possess cubic symmetry. ©2006 American Institute of Physics

    Mass fractionation of noble gases in synthetic methane hydrate : implications for naturally occurring gas hydrate dissociation

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Chemical Geology 339 (2013): 242-250, doi:10.1016/j.chemgeo.2012.09.033.As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean–atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.Partial support for this research was provided by Interagency Agreements DE-FE0002911 and DE-NT0006147 between the U.S. Geological Survey Gas Hydrates Project and the U.S. Department of Energy's Methane Hydrates Research and Development Program

    Density of mechanisms within the flexibility window of zeolites

    Full text link
    By treating idealized zeolite frameworks as periodic mechanical trusses, we show that the number of flexible folding mechanisms in zeolite frameworks is strongly peaked at the minimum density end of their flexibility window. 25 of the 197 known zeolite frameworks exhibit an extensive flexibility, where the number of unique mechanisms increases linearly with the volume when long wavelength mechanisms are included. Extensively flexible frameworks therefore have a maximum in configurational entropy, as large crystals, at their lowest density. Most real zeolites do not exhibit extensive flexibility, suggesting that surface and edge mechanisms are important, likely during the nucleation and growth stage. The prevalence of flexibility in real zeolites suggests that, in addition to low framework energy, it is an important criterion when searching large databases of hypothetical zeolites for potentially useful realizable structures.Comment: 11 pages, 3 figure

    Permeability of Noble Gases through Kapton, Butyl, Nylon, and "Silver Shield"

    Get PDF
    Noble gas permeabilities and diffusivities of Kapton, butyl, nylon, and "Silver Shield" are measured at temperatures between 22C and 115C. The breakthrough times and solubilities at 22C are also determined. The relationship of the room temperature permeabilities to the noble gas atomic radii is used to estimate radon permeability for each material studied. For the noble gases tested, Kapton and Silver Shield have the lowest permeabilities and diffusivities, followed by nylon and butyl, respectively.Comment: 14 pages, 7 figure

    Numerical study of multilayer adsorption on fractal surfaces

    Full text link
    We report a numerical study of van der Waals adsoprtion and capillary condensation effects on self-similar fractal surfaces. An assembly of uncoupled spherical pores with a power-law distributin of radii is used to model fractal surfaces with adjustable dimensions. We find that the commonly used fractal Frankel-Halsey-Hill equation systematically fails to give the correct dimension due to crossover effects, consistent with the findings of recent experiments. The effects of pore coupling and curvature dependent surface tension were also studied.Comment: 11 pages, 3 figure

    Canterbury game industry action plan 2022

    Get PDF
    This report reviews the video game and interactive media industry landscape, and is intended for game studios, local and international investors in the games industry, regional policy makers, central government, local government agencies, Christchurch City Council, and sector stakeholders
    • …
    corecore