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We analyze the diffusion of charged and neutral tracers suspended in an electrolyte embedded in a
channel of varying cross section. Making use of systematic approximations, the diffusion equation
governing the motion of tracers is mapped into an effective 1D equation describing the dynamics
along the longitudinal axis of the channel where its varying-section is encoded as an effective
entropic potential. This simplified approach allows us to characterize tracer diffusion under generic
confinement by measuring their mean first passage time (MFPT). In particular, we show that the
interplay between geometrical confinement and electrostatic interactions strongly affect the MFTP of
tracers across corrugated channels hence leading to alternative means to control tracers translocation
across charged pores. Finally, our results show that the MFPTs of a charged tracer in opposite
directions along an asymmetric channel may differ We expect our results to be relevant for biological
as well synthetic devices whose dynamics is controlled by the detection of diluted tracers. C 2016 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4939799]

I. INTRODUCTION

The control of the properties of tracer transport along
channels or pores is a key issue for a variety of situations.
For example, the development of micro- and nano-fluidic
devices relies on the understanding of the tracer motion
in an electrolyte embedded in micro- and nano-metric
confinements.1 Moreover, several biological processes such as
neuronal signaling, ion pumping, photosynthesis, and ATPase,
just to mention a few, rely on the transport of ions across
membranes or through channels.2 In general, the structure
of the conduit tracers travel through is inhomogeneous and
it may present bottlenecks or cavities that can alter the
overall transport properties, as it has been recently shown
for both charged3–9 as well neutral systems.10–13 In particular,
inhomogeneities in the properties of the channel can lead
to rectification,5 diode-like behavior,14,15 or recirculation and
negative mobility.8,9 In many of the aforementioned scenarios,
the main aim is to control the current of tracers at steady state.
However, diverse biological as well as synthetic scenarios are
controlled by the recognition of very diluted receptors as it is
for diffusion limited reactions and pattern forming systems,16

transport across nuclear,17,18 or plasma19 membrane or, in
general, for detectors of solutes diffusing through porous
media.20,21 Concerning the latter, cone-like pores have been
particularly exploited in resistive-pulse sensing techniques to
measure properties of diverse particle ranging from micro- to
nano-metric scales.22–25 For such systems, the time a tracer
takes to reach a given target for the first time, namely, the
Mean First Passage Time (MFPT), constitutes a standard and
useful indicator.

a)Author to whom correspondence should be addressed. Electronic mail:
malgaretti@is.mpg.de

In this contribution, we study the MFPT of both charged
and neutral tracers across channels of varying cross section
characterized by charged channel walls. Our results show a
remarkable dependence of the MFPT on particle charge as
well as on channel corrugation. For positively charged channel
walls, positive (negative) tracers are depleted (attracted)
towards the channel walls and their MFPT is enlarged
(reduced). We show that this asymmetric response is especially
enhanced when the Debye length, κ−1 is comparable to the
channel average section h0, consistent with previous results
on asymmetric charged tracer motion through inhomogeneous
channels.8,9 Moreover, the MFPT is sensitive to the direction
in which the channel is crossed. In particular, such a
feature persists also for neutral tracers hence underlying its
geometrical origin. We exploit a systematic procedure to
approximate the tracer MFTP and develop a framework that
allows us to disentangle the geometric (entropic) contribution
from the electrostatic (enthalpic) and therefore to identify
the interplay between the geometrical constraints and the
inhomogeneous distribution provided by the electrostatic
interactions.

The structure of the text is the following: in Section II, we
derive the 1D effective equation for charged tracers moving in
a channel of varying cross section, in Section III, we present
our results, and in Section IV, we summarize our conclusions.

II. THEORETICAL FRAMEWORK

To capture the main features of the interplay between
the geometrically induced local rectification provided by the
varying-section of the channel and the electrostatic field, we
study a z–z electrolyte embedded in a channel of varying cross
section, see Fig. 1. We assume that particles are constrained in

0021-9606/2016/144(3)/034901/7/$30.00 144, 034901-1 © 2016 AIP Publishing LLC
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FIG. 1. First passage time trajecto-
ries of neutral and charged tracers in
a corrugated channel characterized by
φ = 0 (left panel) and φ = π (right
panel) where φ is defined in Eq. (16).

a channel of varying cross section whose y-section changes
solely along the x-direction and it is constant along z. The
channel section accessible to the center of mass of a point-like
tracer is 2h(x)Lz, being h(x) the half-width of the channel
along the y-direction and Lz the (constant) width of the
channel along the z-direction.

The motion of a suspension of non-interacting charged
particles is characterized by a convection-diffusion equation,
which in the overdamped regime reads

∂Pq(x, t)
∂t

= D β∇ ·
�
eqPq(x, t)∇W (x)� + D∇2Pq(x, t), (1)

where Pq quantifies the probability distribution of tracers of
charge eq, where e stands for the elementary charge, D is
the tracer diffusion coefficient, β = 1/kBT the inverse thermal
energy for a system at temperature T (being kB the Boltzmann
constant), and W (x) is the total conservative potential acting
on the tracers. We encode the presence of the channel and the
electrostatic potential, in the overall potential W (x) defined as

W (x) =



ψ(x), |y | ≤ h(x) and |z | ≤ Lz/2
∞, |y | > h(x) or |z | > Lz/2

(2)

that is periodic along the longitudinal direction x, W (x)
= W (x + Lex), constant along the z direction and confines
particles inside the channel. In order to find the electrostatic
potential,ψ(x), inside the channel, we should solve the Poisson
equation

∂2ψ(x)
∂x2 +

∂2ψ(x)
∂ y2 = −

ρq(x)
ϵ

, (3)

where ϵ corresponds to the medium dielectric constant. The
electrostatic potential has to satisfy the boundary condition
of constant potential ζ (or prescribed charge density) for
conducting (or insulating) channel walls. In Eq. (3), ρq
= ρ0 exp (−βzeψ(x)) corresponds to the equilibrium ion
charge density inside the channel in the absence of tracers.
Assuming smoothly varying channel walls, ∂xh ≪ 1, we
can take advantage of the lubrication approximation, ∂2

xψ(x)
≪ ∂2

yψ(x) and reduce Eq. (3) to a 1D equation for the
potential ψ(x). Since the electrostatic field is perpendicular to
the channel walls, for channel of varying cross section, we
must consider the projection of the electrostatic field along
the channel when solving the Poisson equation, as shown in
Fig. 2. For smoothly varying amplitude channels, for which
dxh(x) ≪ 1, the projected electrostatic field reduces to

E = E0 cos(α) = E0


1 − 1

2

(
dh(x)

dx

)2
, (4)

where α = arctan (dxh(x)). Therefore, this geometric correc-
tion is of second order in dxh(x) and can be neglected in the
following.

We can exploit the regime dxh(x) ≪ 1, for which
the lubrication approximation holds, to simplify Eq. (1).
Specifically, we factorize Pq(x, t) to arrive at

Pq(x, t) = pq(x, t) e−βeqψ(x)

e−βAq(x) (5)

e−βAq(x) =
1

2Lzh0

 Lz/2

−Lz/2

 h(x)

−h(x)
e−βeqψ(x)dydz, (6)

where h0 is the average amplitude of the channel. Equation (6)
reproduces the well-known Fick-Jacobs approximation10,26–29

that has been exploited in diverse situations, such as
entropic resonance,30 cooperative rectification,31 and entropic
splitters.32 Integrating over the channel cross section, we
obtain

∂pq(x, t)
∂t

=
∂

∂x
D


βpq(x, t)∂Aq(x)

∂x
+
∂pq(x, t)
∂x


(7)

where now the confinement is encoded in the effective
potential

Aq(x) = −β−1 ln


1
2h0

 h(x)

−h(x)
e−βeqψ(x, y)dy


(8)

that being the integral of the Boltzmann weight over all
possible configurations for a given longitudinal position,
x, can be interpreted as an equilibrium free energy. In
the last step, we have taken advantage of the fact that
all the quantities of interest are independent of z. Hence,
without loss of generality, we have assumed

 Lz/2
−Lz/2

dz = 1.
Defining the average, x–dependent, electrostatic energy
as

FIG. 2. Debye double layer inside a channel of varying cross section. The
Debye length κ−1

0 = λ0 is shown as well as the approximated Debye length
κ−1= λ.
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⟨Uq(x)⟩ = eβAq(x) 1
2h0

 h(x)

−h(x)
eqψ(x, y)e−βeqψ(x, y)dy (9)

from Eq. (6), we can define the entropy along the channel as
T Sq(x) = ⟨Uq(x)⟩ − Aq(x) hence getting

Sq(x) = ln


1
2h0

 h(x)

−h(x)
e−βeqψ(x, y)dy


+ β⟨Uq(x)⟩. (10)

In order to keep analytical insight, we assume low
salt concentration in the electrolyte and a small potential
on the channel walls, ζ , i.e., βeζ ≪ 1. In this regime,
we can linearize the Poisson-Boltzmann equation, hence
the electrostatic potential inside a conducting walls channel
(similar results can be obtained for insulating channel walls)
reads

ψ(x, y) = ζ cosh(κ y)
cosh(κh(x)) , (11)

where κ =


4πℓBz2(ρ+(x) + ρ−(x)) is the inverse Debye
length for an electrolyte of valence z and solution ionic
strength ρ0z2, ℓB = βe2/4πϵ stands for the electrolyte Bjerrum
length. In this linear regime, when also βeqψ(x, y) ≪ 1, we
can linearize Eq. (10) getting

S0(x) ≃ ln
2h(x)
2h0

, (12)

where the entropy has a clear geometric interpretation, being
the logarithm of the space, 2h(x), accessible to the center
of mass of a point-like tracer. Accordingly, we introduce the
entropy barrier for neutral tracers, ∆S0, defined as

∆S0 = ln
hmax

hmin
, (13)

which represents the difference, in the entropic potential,
evaluated at the maximum, hmax, and minimum, hmin of the
channel aperture. Finally, we can define the total effective free
energy difference as

∆Aq = Aq(hmax) − Aq(hmin) = ∆⟨Vq⟩ − T∆Sq, (14)

which using Eq. (9) and (10) leads to

∆Aq = −β−1 ln


 hmax
−hmax

e−βeqψ(xM, y)dy hmin
−hmin

e−βeqψ(xm, y)dy


. (15)

III. RESULTS

We will analyze the motion of charged tracers in a channel
whose half section along the y-direction is characterized by

h(x) = h0 − h1 cos
(

2πx
L
+ φ

)
, (16)

where h0 is the average channel section and h1 is its
modulation amplitude and assume the channel to be flat along
the z-direction. φ controls the channel shape with respect
to its boundaries fixed at x = 0 and x = L. Accordingly,
the maximum and minimum channel apertures read hmax

= h0 + h1 and hmin = h0 − h1, respectively.
In order to characterize the diffusion of tracers in such

channels, we study the time tracers take to get at a prescribed

channel end for the first time. In particular, we focus on the
mean of such a quantity, namely, the MFPT tracers take to
pass across the channel. In the following, we assume that one
of the ends of the channel, namely, the one at x = 0, is in
contact with a reservoir of tracers and we measure the MFPT
that positive, negative, or neutral tracers, tq(x), take to diffuse
from a given position inside the channel x to the channel
end at x = L. Such a situation corresponds to a reflecting
boundary condition on the end of the channel in contact with
the reservoir, i.e., at x = 0, and to an absorbing condition
at the other end, at x = L.38 Unless otherwise specified, we
assume φ = 0 in Eq. (16), for which channel bottlenecks are
located at the channel ends. Taking advantage of the 1D
projection, Eq. (7), we calculate the x-dependent MFPT, t(x),
from Ref. 33,

βD
dAq(x)

dx
dtq(x)

dx
+ D

d2tq(x)
dx2 = −1. (17)

From the numerical solution of this expression, the MFTP
of tracers is derived, Tq = tq(0). Fig. 3 shows the inverse
MFPT for positive and negative tracers across a channel of
varying cross section normalized by the MFPT of neutral
tracers, T0, whose MFPT does not depend on the Debye
length κ−1. When κ−1 is comparable with the channel average
amplitude, h0, negative tracers benefit from the attraction to
the positively charged and display an enhanced diffusion. On
the contrary, positive tracers, depleted from the walls, suffer a
caging effect due to the entropic barrier resulting in a larger
MFPT as compared to that of negative or neutral tracers.
Such feature reminds the one observed for tracers in a porous
media obtained by coarse-grained numerical simulations.34,35

Interestingly, such a modulation in the MFPT for charged
tracers vanishes for κh0 ≪ 1 as well as for κh0 ≫ 1, in
agreement with the entropic electrokinetic regime observed for
tracers under external forcing8 and under chemical potential
gradients.9

We can gain insight in the dependence of the MFPT on κ
by analyzing the effective barrier experienced by the tracers,
quantified by the free energy difference ∆Aq as defined in
Eq. (15). Fig. 3(b) shows that the dependence of ∆Aq on κ is
sensitive to tracers’ charge. In particular, for κh0 → 1, the free
energy barriers of negative tracers (blue squares) diminishes
while the opposite holds for positive tracers (red squares).
Such a diverse behavior of ∆Aq according to tracer charge
explains the different behavior of the MFPT shown in Fig. 3:
positive tracers, which experience an enhanced free energy
barrier, will take longer to cross the channel as compared to
negative tracers.

Using Eqs. (6), (9), and (10), we can separately quantify
the entropic and enthalpic contributions to the effective
free energy difference. As shown in Fig. 3(b), the entropic
contribution (circles) is mildly affected by variations in κh0
whereas the enthalpic contribution (diamonds) shows a strong
sensitivity. Moreover, while for positive tracers (red points),
the enthalpic and entropic contributions sum up amplifying
the magnitude of ∆Aq, for negative tracers (blue points), the
two contributions have different signs therefore reducing the
magnitude of ∆Aq.
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FIG. 3. (a) Filled points: inverse of the MFPT, 1/Tq, obtained from the numerical solution of Eq. (17) and normalized by the MFPT of neutral tracers T0, as
a function of the inverse Debye length, κ−1, normalized by the average channel amplitude h0 for positive, q = 3 (red squares) or negative, q =−3 (blue dots)
tracers in a conducting channel characterized by βeζ = 1 and ∆S0= 0.84,1.4,2.2 where bigger points stands for larger values of ∆S0. Open points: theoretical
prediction of the MFPT provided by Eq. (18). (b) Total free energy difference β∆Aq (squares), defined in Eq. (6), entropy barrier, ∆Sq (circles) defined in
Eq. (10) and enthalpic barrier, β∆Vq (diamonds) defined in Eq. (9) as a function of the inverse Debye length, κ−1 for positive, q = 3 (red solid lines), and
negative, q =−3 (blue dashed lines) tracers, with ∆S0= 0.51. (c) Inverse of the MFPT obtained from the numerical solution of Eq. (17) and normalized by the
MFPT for ∆S0= 0, as a function of the entropic barrier ∆S0 for positive (red squares), q = 3, or negative (blue dots), q =−3, tracers with κh0= 1, βeζ = 1, for
φ = 0, π/2,3π/2 standing bigger points for larger values of φ. (d) Ratio of the MFPTs τ =T−/T+ (orange circles), and current, ι (green diamonds) as a function
of the entropic barrier ∆S0. MFPTs are obtained from the numerical solution of Eq. (17) for the same parameters as in panel (c).

We can simplify Eq. (17), even in the non-linear
regime βeqψ > 1, by assuming ∂xAq(x) to be piece-wise
linear. Choosing ∂xAq(x) = ±2∆Aq

L
for x < L/2 or x > L/2,

respectively, we can analytically solve Eq. (17) getting

T̄q =
L2

D β∆A2
q

�
cosh β∆Aq − 1

�
. (18)

In the limit ∆Aq → 0, Eq. (14) leads to T̄q =
L2

2D in agreement
with Eq. (17). When ∆Aq , 0, we can substitute the values
of ∆Aq derived from Eq. (14) into Eq. (18). Fig. 3(a) shows
that this approximation provides a very good quantitative
agreement with the numerical solutions.

In the linear regime, βeqψ(x, y) . 1, we can obtain
analytic expressions for the effective free energy barrier
experienced by a charged tracer

∆A ≃ −β−1


ln


hmax

hmin


+ ln [1 + βζeq∆Θ]


, (19)

where

∆Θ =
tanh (κhmin)

κhmin
− tanh (κhmax)

κhmax
(20)

which shows that the enthalpic contribution always vanishes
when βζeq → 0 and κh → ∞ or κh → 0, and ∆Aq reduces to
the entropic barrier, ∆S0 experienced by neutral tracers. On the
contrary, when κh ≃ 1, the enthalpic contribution is relevant
and ∆Aq retains a dependence the charge: positive (negative)
tracers experience an enhanced (reduced) free energy barrier,
as shown in Fig. 3(b).

We can characterize the dependence of the MFPT on
the channel geometry by considering a prescribed electrolyte,
κ, and a charged channel with electrostatic potential, ζ , and
vary the entropic barrier, ∆S0. For φ = 0 (similar results have
been obtained for φ = ±π), Fig. 3(c) shows a monotonous
increase in the MFPT for all tracers upon increasing ∆S0. For
neutral tracers such an increase in the MFPT is the signature
of the entropic-induced modulation in tracer transport due
to the varying-section of the channel. In particular, positive
tracers are the most sensitive to the entropic barrier whereas
negative tracers are the least sensitive to variations in ∆S0,
in agreement with the prediction of Eq. (19). For φ , 0,±π,
Fig. 3(c) shows two opposite regimes. While for φ = π/2,
the behavior is similar to φ = 0,±π except that all tracers
experience an enhanced dependence on ∆S0, for φ = 3π/2,
the dependence of the MFPT on ∆S0 is no longer monotonic
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and the MFPT is minimized for a non-vanishing value of ∆S0,
in agreement with previous general models that accounted
for only enthalpic contributions.36 Moreover, in the range
of values of ∆S0 for which the effective free energy barrier
reduces the MFPT, positive tracers are faster than neutral and
negative ones. In contrast, for larger values of ∆S0, negative
tracers are faster than neutral and positive ones.

The asymmetric response of positive and negative
tracers to the channel corrugation can be useful to control
their relative motion and positioning along a channel, with
relevant applications, such as chemical segregation or particle
separation. Hence, it is interesting to quantify the ratio of the
MFPT of positive and negative tracers, namely,

τ =
T+
T−
. (21)

As shown in Fig. 3(d), for uniform channels, ∆S0 = 0,
positive and negative tracers experience the same MFPT while
for increasing ∆S0, the dependence of τ on ∆S0 is sensitive to
φ. For φ = 0,±π, negative tracers can be up to ten times faster
than positive ones. On the contrary, for φ = 3π/2, the ratio
between positive and negative tracers is larger than unity for
smaller values of ∆S0 and eventually is smaller than unity for
increasing values of ∆S0.

The asymmetric response of positive and negative tracers
means that if released homogeneously, they will induce a
transient electric current due to the channel inhomogeneous
section. This current can be estimated using the MFTPs
through the quantity

ι =
L2

2D
T− − T+

T−T+
. (22)

For φ = 0,±π, Fig. 3(d) shows a non-monotonous behavior of
ι on ∆S0, displaying a maximum for ∆S ∼ 1. In contrast, for
φ = 3π/2, the sign of the current changes with ∆S0 switching
from positive currents, for smaller values of ∆S0, to negative
currents for larger values of ∆S0.

Since the MFPT displays a non-trivial dependence on the
channel geometrical details,37 we have systematically studied
the dependence of the MFPT on φ, as shown in Fig. 4(a). In
particular, Fig. 4(a) shows that for a large set of values of
φ, positive tracers take more time than neutral and negative
ones to leave the channel, as depicted for φ = 0. As already
anticipated in Fig. 3(c), for φ ∼ π/2 and small values of the
entropic barrier, ∆S0 . 1, the MFPT of all tracers is smaller
than the corresponding value for a flat channel, i.e., for
∆S0 = 0. Moreover, in this range of parameters, the MFPT
of positively charged tracers is smaller than the MFPT of
neutral and negative tracers. In contrast, for φ / π/2 and/or
for larger values of ∆S0 tracers, MFPT is smaller than the
corresponding MFPT for ∆S0 = 0 and the MFPT of negative
tracers is smaller than that of neutral and positive ones.
This dependence underlines the sensitivity of the MFPT on
the details of the sequence of bottlenecks and apertures.
Accordingly, we expect a similar behavior for an asymmetric
channel where instead of varying the phase, φ, we modify the
relative position of the maximum amplitude of the channel
while keeping fixed the channel bottlenecks at the boundaries.

Obviously, for a set of connected channels, the dependence
on φ will vanish asymptotically.

The involved dependence of the MFPT on the channel
geometry rises the question of the difference in the MFPT
of a tracer along opposite directions of a prescribed channel.
We can exploit the symmetry of the channel under study and
consider the ratio between the MFPT of a tracer moving in
opposite directions, Γq, which can be obtained from the results
in Fig. 4(a) noticing that, given Tq(φ), the MFTP along the
opposite direction of the channel is Tq(−φ). Accordingly, we
quantify this asymmetry with the quantity

Γq =
Tq(−φ)
Tq(φ) (23)

that for a constant channel, ∆S0 = 0, leads to Γq = 1. Fig. 4(b)
shows that positive tracers, whose MFPT is more sensitive to
φ, experience a remarkable dependence of Γq on the phase
shift, φ, whereas neutral and negative tracers are less affected.
Moreover, Fig. 4(b) shows that the modulation of Γq increases
with the entropic barrier, ∆S0. In order to quantify such a
dependence, we can look at the dispersion of the values of Γq,
defined as

νq =
1

2π

 π

−π
Γ

2
qdφ. (24)

The inset of Fig. 4(b) shows a monotonic growth of νq upon
increase of ∆S0 whereas νq → 1 for ∆S0 → 0.

If tracers of opposite charge are present at the same time,
we can estimate the electric current generated in response
to fluctuations as defined in Eq. (22). Fig. 4(c) shows the
dependence of ι on the phase φ for different values of ∆S0.
Interestingly, ι is very sensitivity to the channel geometry, and
its sign and magnitude can vary significantly. As shown in
Fig. 4(c), for small entropic barriers, ∆S0 ≪ 1 the amplitude
of the deviations in the electric current profile are reduced and
the profile is almost symmetric with respect to the phase φ.
Hence by tuning the geometry of the channel it is possible to
select which tracers has the shortest MFPT. On the contrary,
large values of ∆S0 amplify the difference in the MFPT of
tracers with opposite charges and the dependence of ι on
φ becomes more complex. Eventually, for larger entropy
barriers, ∆S0 ≃ 10, the enthalpic barrier that positive tracers
(depleted from channel walls) have to overcome becomes so
large that their MFPT always exceed that of negative tracers,
hence leading to a constant sign of ι whose amplitude still
retains a dependence on φ.

The asymmetry in the transport properties of the channel
shown in Fig. 4(b) resemble that of a diode for which the
magnitude of the flux varies upon inverting the boundary
conditions. From the MFTP corresponding to each set of
boundary conditions, we can estimate a rectifying flux

Πq =
L2

D

(
Tq(−φ) − Tq(φ)

Tq(φ)Tq(−φ)
)
, (25)

which vanishes for symmetric channels, for which Tq(−φ)
= Tq(φ). Fig. 4(d) shows the dependence ofΠq on the phase φ.
In particular, Πq , 0 for φ , 0, ±π, therefore the asymmetry
in the MFPT identifies a direction along which particle can
diffuse faster. The non-vanishing values of Π0 for neutral
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FIG. 4. (a) Inverse of the MFPT, Tq, obtained from the numerical solution of Eq. (17) and normalized by the MFPT for ∆S0= 0, as a function of the channel
shape characterized by the phase φ with βeζ = 1, κh0= 1 and ∆S0= 0.2,1 (bigger points correspond to larger values of ∆S0) for positive, q = 3 (red squares),
negative, q =−3 (blue dots) and neutral, q = 0 (cyan triangles), tracers. (b) Ratio of the MFPT, shown in panel (a), of tracers diffusing along opposite directions,
Γq, as a function of the phase, φ, for positive, q = 3 (red squares), negative, q =−3 (blue dots), and neutral, q = 0 (cyan triangles), tracers, κh0= 1 and
∆S0= 0.2,1 (bigger points correspond to larger values of ∆S0). Inset: Dependence of νq on φ for positive (light green squares), negative (orange dots), and
neutral (dark green triangles), tracers (same parameter values as in the main panel). (c) Dimensionless difference in the effective tracer currents, ι as a function
of φ, for different values of the entropic barrier ∆S0= 0.2,0.4,1,2,3 where bigger points and darker lines correspond to larger values of ∆S0, with κh0= 1 and
βeζ = 1. MFPTs are obtained from the numerical solution of Eq. (17). (d) Dimensionless difference in the effective tracer currents, Πq as a function of φ, for
positive, q = 3 (red squares), negative, q =−3 (blue dots), and neutral, q = 0 (cyan triangles), tracers, with ∆S0= 1, κh0= 1 and βeζ = 1. MFPTs are obtained
from the numerical solution of Eq. (17). Inset: Dependence of µq, for positive (light green squares), negative (orange dots), and neutral (dark green triangles)
tracers (same parameter values as in main panel).

tracers show that such an effect has an entropic origin since
for neutral tracers there is no enthalpic contribution. The
amplitude of the entropic barrier, ∆S0 strongly affects the
values of Πq. In order to quantify such a dependence, it is
insightful to look at

µq =
1

2π

 π

−π
Π

2
qdφ (26)

that, since
 π
−π Πqdφ = 0, captures the overall departure of Πq

from the symmetric case characterized by Πq = 0. The inset
of Fig. 4(d) shows that µq has non-monotonous dependence
on ∆S0 and we can identify a, charge-dependent, optimal value
of ∆S0 that maximizes Πq.

IV. CONCLUSIONS

We have studied the MFPT of charged and neutral tracers
suspended in an electrolyte confined between charged walls.

Our data show a remarkable dependence of the MFPT of both
charged and neutral tracers on the channel geometry when
the double layer is comparable to the channel section. We
have found that the MFPT depends on both the amplitude
of the channel corrugation, which we quantify through an
entropic parameter ∆S0 (see Fig. 3(c)) as well as on the
details of the geometry of the channel captured by φ (see
Fig. 4(a)). In particular, we have found a strong asymmetry in
the dependence of the MFTP on φ (see Fig. 4(b)). In particular,
by quantifying the difference in the MFPT for tracers diffusing
along opposite directions through the corrugated channel, Πq

(see Fig. 4(d)), we have found a non-monotonic behavior
of Πq upon increasing ∆S0. For ∆S0 → 0 or ∆S0 → ∞, we
have Πq → 0 whereas Πq experience a maximum for ∆S0 ≃ 1
(see inset of Fig. 4(d)). Moreover, for mild values of ∆S0
and for φ ≃ π/2, we found a reduction of the MFPT of all
tracers as compared to the corresponding values obtained
for ∆S0 = 0 (see Fig. 3(c)). Therefore, the corrugation of
the channel can reduce the time that the tracers needs to
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cross it, showing the relevance of entropic constraints as a
complementary mechanism to the enthalpic forces identified
earlier.36 Interestingly, these features persist also for neutral
tracers, hence underlying the entropic origin of these effects.

For charged tracers, the electrostatic interactions with
the charged channel walls provide additional parameters to
control the MFPT, namely, their positive (negative) charge and
the properties of the electrolyte, captured by the Debye length
κ−1. In fact, according to the sign of their charge, tracers are
depleted or attracted to the channel walls hence experiencing
different enthalpic barriers. When the Debye length, κ−1 and
the channel average section h0 are not commensurate, namely,
κh0 ≪ 1 or κh0 ≫ 1, the MFPT is quite insensitive to the
charge of the tracers, similarly to what has been observed in
driven systems.8,9

In the present framework, we have dealt with point-
like particles but the extension to finite-size particles is
straightforward. As it has been discussed earlier,12,32 it is
possible to incorporate the dependence on particle size taking
into account that the effective width available to the tracer is
reduced by its own size. Accordingly, the formalism developed
can be straightforwardly extended changing the integration
limits both in the effective free energy barrier,∆A, and channel
opening, ∆S0, to hmin → hmin − R and hmax → hmax − R. Such
a generalization clarifies the impact that tracer size and
entropic constraints have on tracer MFTP: larger particles
will experience a larger effective entropic barrier as compared
to smaller ones, therefore opening a new route for tuning
particle MFPT across corrugated channels.

Finally we remark that our results can be used to deduce
the shape of a pore by using data coming from resistive pulse
sensing experiments.21–25
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