4,405 research outputs found

    Glass transition and random walks on complex energy landscapes

    Get PDF
    We present a simple mathematical model of glassy dynamics seen as a random walk in a directed, weighted network of minima taken as a representation of the energy landscape. Our approach gives a broader perspective to previous studies focusing on particular examples of energy landscapes obtained by sampling energy minima and saddles of small systems. We point out how the relation between the energies of the minima and their number of neighbors should be studied in connection with the network's global topology, and show how the tools developed in complex network theory can be put to use in this context

    Random inelasticity and velocity fluctuations in a driven granular gas

    Full text link
    We analyze the deviations from Maxwell-Boltzmann statistics found in recent experiments studying velocity distributions in two-dimensional granular gases driven into a non-equilibrium stationary state by a strong vertical vibration. We show that in its simplest version, the ``stochastic thermostat'' model of heated inelastic hard spheres, contrary to what has been hitherto stated, is incompatible with the experimental data, although predicting a reminiscent high velocity stretched exponential behavior with an exponent 3/2. The experimental observations lead to refine a recently proposed random restitution coefficient model. Very good agreement is then found with experimental velocity distributions within this framework, which appears self-consistent and further provides relevant probes to investigate the universality of the velocity statistics.Comment: 5 pages, 5 eps figure

    Free cooling and inelastic collapse of granular gases in high dimensions

    Full text link
    The connection between granular gases and sticky gases has recently been considered, leading to the conjecture that inelastic collapse is avoided for space dimensions higher than 4. We report Molecular Dynamics simulations of hard inelastic spheres in dimensions 4, 5 and 6. The evolution of the granular medium is monitored throughout the cooling process. The behaviour is found to be very similar to that of a two-dimensional system, with a shearing-like instability of the velocity field and inelastic collapse when collisions are inelastic enough, showing that the connection with sticky gases needs to be revised.Comment: 6 pages, 6 figures (7 postscript files), submitted to EPJ

    Can co-location be used as a proxy for face-to-face contacts?

    Get PDF
    Technological advances have led to a strong increase in the number of data collection efforts aimed at measuring co-presence of individuals at different spatial resolutions. It is however unclear how much co-presence data can inform us on actual face-to-face contacts, of particular interest to study the structure of a population in social groups or for use in data-driven models of information or epidemic spreading processes. Here, we address this issue by leveraging data sets containing high resolution face-to-face contacts as well as a coarser spatial localisation of individuals, both temporally resolved, in various contexts. The co-presence and the face-to-face contact temporal networks share a number of structural and statistical features, but the former is (by definition) much denser than the latter. We thus consider several down-sampling methods that generate surrogate contact networks from the co-presence signal and compare them with the real face-to-face data. We show that these surrogate networks reproduce some features of the real data but are only partially able to identify the most central nodes of the face-to-face network. We then address the issue of using such down-sampled co-presence data in data-driven simulations of epidemic processes, and in identifying efficient containment strategies. We show that the performance of the various sampling methods strongly varies depending on context. We discuss the consequences of our results with respect to data collection strategies and methodologies

    Epidemic risk from friendship network data: an equivalence with a non-uniform sampling of contact networks

    Full text link
    Contacts between individuals play an important role in determining how infectious diseases spread. Various methods to gather data on such contacts co-exist, from surveys to wearable sensors. Comparisons of data obtained by different methods in the same context are however scarce, in particular with respect to their use in data-driven models of spreading processes. Here, we use a combined data set describing contacts registered by sensors and friendship relations in the same population to address this issue in a case study. We investigate if the use of the friendship network is equivalent to a sampling procedure performed on the sensor contact network with respect to the outcome of simulations of spreading processes: such an equivalence might indeed give hints on ways to compensate for the incompleteness of contact data deduced from surveys. We show that this is indeed the case for these data, for a specifically designed sampling procedure, in which respondents report their neighbors with a probability depending on their contact time. We study the impact of this specific sampling procedure on several data sets, discuss limitations of our approach and its possible applications in the use of data sets of various origins in data-driven simulations of epidemic processes

    On the properties of small-world network models

    Full text link
    We study the small-world networks recently introduced by Watts and Strogatz [Nature {\bf 393}, 440 (1998)], using analytical as well as numerical tools. We characterize the geometrical properties resulting from the coexistence of a local structure and random long-range connections, and we examine their evolution with size and disorder strength. We show that any finite value of the disorder is able to trigger a ``small-world'' behaviour as soon as the initial lattice is big enough, and study the crossover between a regular lattice and a ``small-world'' one. These results are corroborated by the investigation of an Ising model defined on the network, showing for every finite disorder fraction a crossover from a high-temperature region dominated by the underlying one-dimensional structure to a mean-field like low-temperature region. In particular there exists a finite-temperature ferromagnetic phase transition as soon as the disorder strength is finite.Comment: 19 pages including 15 figures, version accepted for publication in EPJ
    • …
    corecore