8 research outputs found

    Moving HammerCloud to CERN's private cloud

    No full text
    HammerCloud is a testing framework for the Worldwide LHC Computing Grid. Currently deployed on about 20 hand-managed machines, it was desirable to move it to the Agile Infrastructure, CERN's OpenStack-based private cloud

    HEPiX Spring 2019 Summary

    No full text
    The HEPiX forum brings together worldwide Information Technology staff, including system administrators, system engineers, and managers from the High Energy Physics and Nuclear Physics laboratories and institutes, to foster a learning and sharing experience between sites facing scientific computing and data challenges. Participating sites include BNL, CERN, DESY, FNAL, IHEP, IN2P3, INFN, JLAB, Nikhef, RAL, SLAC, TRIUMF and many others. The HEPiX organization was formed in 1991, and its semi-annual meetings are an excellent source of information and sharing for IT experts in scientific computing

    Wi-Fi service enhancement at CERN

    No full text
    Since the early 2000’s, the number of mobile devices connected to CERN’s internal network has increased from just a handful to well over 10,000. Wireless access is no longer simply “nice to have” or just for conference and meeting rooms; support for mobility is expected by most, if not all, of the CERN community. In this context, a full renewal of the CERN Wi-Fi network has been launched to deliver a state-of-the-art campus-wide Wi-Fi Infrastructure. We aim to deliver, in more than 200 office buildings with a surface area of over 400,000m2 and including many high-priority and high-occupation zones, an end-user experience comparable, for most applications, to a wired connection and with seamless mobility support. We describe here the studies and tests performed at CERN to ensure the solution we are deploying can meet these goals as well as delivering a single, simple, flexible and open management platform

    Testing as a Service with HammerCloud

    No full text
    HammerCloud was designed and born under the needs of the grid community to test the resources and automate operations from a user perspective. The recent developments in the IT space propose a shift to the software defined data centres, in which every layer of the infrastructure can be offered as a service. Testing and monitoring is an integral part of the development, validation and operations of big systems, like the grid. This area is not escaping the paradigm shift and we are starting to perceive as natural the Testing as a Service (TaaS) offerings, which allow testing any infrastructure service, such as the Infrastructure as a Service (IaaS) platforms being deployed in many grid sites, both from the functional and stressing perspectives. This work will review the recent developments in HammerCloud and its evolution to a TaaS conception, in particular its deployment on the Agile Infrastructure platform at CERN and the testing of many IaaS providers across Europe in the context of experiment requirements. The first section will review the architectural changes that a service running in the cloud needs, such an orchestration service or new storage requirements in order to provide functional and stress testing. The second section will review the first tests of infrastructure providers on the perspective of the challenges discovered from the architectural point of view. Finally, the third section will evaluate future requirements of scalability and features to increase testing productivity

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    No full text
    International audienceAbstract Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year‐on‐year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non‐vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its ‘Minimal Information for Studies of Extracellular Vesicles’, which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Varia

    No full text

    33 Supplément | 2021

    No full text
    corecore