201 research outputs found
Modelling ice dynamic contributions to sea level rise from the Antarctic Peninsula
The future ice dynamical contribution to sea-level rise (SLR) from 210 ice shelf nourishing drainage basins of the Antarctic Peninsula Ice Sheet (APIS) is simulated, using the British Antarctic Survey Antarctic Peninsula Ice Sheet Model. Simulations of the grounded ice sheet include response to ice-shelf collapse, estimated by tracking thermal ice shelf viability limits in 14 IPCC Global Climate Model ensemble temperature projections. Grounding line retreat in response to ice shelf collapse is parameterized with a new multivariate linear regression model utilizing a range of glaciological and geometric predictor variables. Multi-model means project SLR up to 9.4 mm sea-level equivalent (SLE) by 2200, and up to 19 mm SLE by 2300. Rates of SLR from individual drainage basins throughout the peninsula are similar to 2100, yet diverge between 2100 and 2300 due to individual basin characteristics. Major contributors to SLR are the outlet glaciers feeding southern George VI Ice Shelf, accounting for >75% of total SLR in some model runs. Ice sheet thinning induced by ice-shelf removal is large (up to ∼500 m), especially in Palmer Land in the Southern Antarctic Peninsula, and may propagate as far as 135 km inland. These results emphasize the importance of the ice dynamical contribution to future sea level of the APIS on decadal to centennial timescales
Recent changes in area and thickness of Torngat Mountain glaciers (northern Labrador, Canada)
The Torngat Mountains National Park, northern Labrador, Canada, contains more
than 120 small glaciers: the only remaining glaciers in continental northeast
North America. These small cirque glaciers exist in a unique topo-climatic
setting, experiencing temperate maritime summer conditions yet very cold and
dry winters, and may provide insights into the deglaciation dynamics of
similar small glaciers in temperate mountain settings. Due to their size and
remote location, very little information exists regarding the health of these
glaciers. Just a single study has been published on the contemporary
glaciology of the Torngat Mountains, focusing on net mass balances from 1981
to 1984. This paper addresses the extent to which glaciologically relevant
climate variables have changed in northern Labrador in concert with
20th-century Arctic warming, and how these changes have affected Torngat Mountain
glaciers. Field surveys and remote-sensing analyses were used to measure
regional glacier area loss of 27 % from 1950 to 2005, substantial rates of
ice surface thinning (up to 6 m yr−1) and volume losses at Abraham,
Hidden, and Minaret glaciers, between 2005 and 2011. Glacier mass balances
appear to be controlled by variations in winter precipitation and,
increasingly, by strong summer and autumn atmospheric warming since the
early 1990s, though further observations are required to fully understand
mass balance sensitivities. This study provides the first comprehensive
contemporary assessment of Labrador glaciers and will inform both regional
impact assessments and syntheses of global glacier mass balance
Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling
Multidecadal meteorological station records and microwave backscatter time-series from the SeaWinds scatterometer onboard QuikSCAT (QSCAT) were used to calculate temporal and spatial trends in surface melting conditions on the Antarctic Peninsula (AP). Four of six long-term station records showed strongly positive and statistically significant trends in duration of melting conditions, including a 95% increase in the average annual positive degree day sum (PDD) at Faraday/Vernadsky, since 1948. A validated, threshold-based melt detection method was employed to derive detailed melt season onset, extent, and duration climatologies on the AP from enhanced resolution QSCAT data during 1999–2009. Austral summer melt on the AP was linked to regional- and synoptic-scale atmospheric variability by respectively correlating melt season onset and extent with November near-surface air temperatures and the October–January averaged index of the Southern Hemisphere Annular Mode (SAM). The spatial pattern, magnitude, and interannual variability of AP melt from observations was closely reproduced by simulations of the regional model RACMO2. Local discrepancies between observations and model simulations were likely a result of the QSCAT response to, and RACMO2 treatment of, ponded surface water, and the relatively crude representation of coastal climate in the 27 km RACMO2 grid
Dynamic response of Antarctic Peninsula Ice Sheet to potential collapse of Larsen C and George VI ice shelves
Ice shelf break-up and disintegration events over the past 5 decades have led to speed-up, thinning, and retreat of upstream tributary glaciers and increases to rates of global sea-level rise. The southward progression of these episodes indicates a climatic cause and in turn suggests that the larger Larsen C and George VI ice shelves may undergo a similar collapse in the future. However, the extent to which removal of the Larsen C and George VI ice shelves will affect upstream tributary glaciers and add to global sea levels is unknown. Here we apply numerical ice-sheet models of varying complexity to show that the centennial sea-level commitment of Larsen C embayment glaciers following immediate shelf collapse is low ( < 2.5 mm to 2100, < 4.2 mm to 2300). Despite its large size, Larsen C does not provide strong buttressing forces to upstream basins and its collapse does not result in large additional discharge from its tributary glaciers in any of our model scenarios. In contrast, the response of inland glaciers to a collapse of the George VI Ice Shelf may add up to 8mm to global sea levels by 2100 and 22mm by 2300 due in part to the mechanism of marine ice sheet instability. Our results demonstrate the varying and relative importance to sea level of the large Antarctic Peninsula ice shelves considered to present a risk of collapse
Future evolution and uncertainty of river flow regime change in a deglaciating river basin
The flow regimes of glacier-fed rivers are sensitive to climate change due to
strong climate–cryosphere–hydrosphere interactions. Previous modelling
studies have projected changes in annual and seasonal flow magnitude but
neglect other changes in river flow regime that also have socio-economic and
environmental impacts. This study employs a signature-based analysis of
climate change impacts on the river flow regime for the deglaciating Virkisá
river basin in southern Iceland. Twenty-five metrics (signatures) are derived from 21st century projections of river flow time series to evaluate changes in
different characteristics (magnitude, timing and variability) of river flow
regime over sub-daily to decadal timescales. The projections are produced by
a model chain that links numerical models of climate and glacio-hydrology.
Five components of the model chain are perturbed to represent their
uncertainty including the emission scenario, numerical climate model,
downscaling procedure, snow/ice melt model and runoff-routing model. The
results show that the magnitude, timing and variability of glacier-fed river
flows over a range of timescales will change in response to climate change.
For most signatures there is high confidence in the direction of change, but
the magnitude is uncertain. A decomposition of the projection uncertainties
using analysis of variance (ANOVA) shows that all five perturbed model chain
components contribute to projection uncertainty, but their relative
contributions vary across the signatures of river flow. For example, the
numerical climate model is the dominant source of uncertainty for projections
of high-magnitude, quick-release flows, while the runoff-routing model is
most important for signatures related to low-magnitude, slow-release flows.
The emission scenario dominates mean monthly flow projection uncertainty, but
during the transition from the cold to melt season (April and May) the
snow/ice melt model contributes up to 23 % of projection uncertainty.
Signature-based decompositions of projection uncertainty can be used to
better design impact studies to provide more robust projections.</p
Recommended from our members
The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution
This study presents a high-resolution (~ 5.5 km) estimate of Surface Mass Balance (SMB) over the period 1979–2014 for the Antarctic Peninsula (AP), generated by the regional atmospheric climate model RACMO2.3 and a Firn Densification Model (FDM). RACMO2.3 is used to force the FDM, which calculates processes in the snowpack, such as meltwater percolation, refreezing and runoff. We evaluate model output with 132 in-situ SMB observations and discharge rates from 6 glacier drainage basins, and find that the model realistically simulates the strong spatial variability in precipitation, but that significant biases remain as a result of the highly complex topography of the AP. It is also clear that the observations significantly underrepresent the high-accumulation regimes.
The SMB map reveals large accumulation gradients, with precipitation values above 3000 mm we yr−1 over the western AP (WAP) and below 500 mm we yr−1 on the eastern AP (EAP), not resolved by coarser data-sets such as ERA-Interim. The other SMB components are one order of magnitude smaller, with drifting snow sublimation the largest ablation term removing up to 100 mm we yr−1 of mass. Snowmelt is widespread over the AP, reaching 500 mm we yr−1 towards the northern ice shelves, but the meltwater mostly refreezes. As a result runoff fluxes are low, but still considerable (200 mm we yr−1) over the Larsen (B/C), Wilkins and George VI ice shelves. The average AP ice sheet integrated SMB, including ice shelves (an area of 4.1 × 105 km2), is estimated at 351 Gt yr−1 with an interannual variability of 58 Gt yr−1, which is dominated by precipitation (PR) (365 ± 57 Gt yr−1). The WAP (2.4 × 105 km2) SMB (276 ± 47 Gt yr−1), where PR is large (276 ± 47 Gt yr−1), dominates over the EAP (1.7 × 105 km2) SMB (75 ± 11 Gt yr−1) and PR (84 ± 11 Gt yr−1). Total sublimation is 11 ± 2 Gt yr−1 and meltwater runoff into the ocean is 4 ± 4 Gt yr−1. There are no significant trends in any of the AP SMB components, except for snowmelt that shows a significant decrease over the last 36 years (−0.36 Gt yr−2)
GEANT4 : a simulation toolkit
Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2
Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host
International audienceBACKGROUND: Membrane proteins are the targets of 50% of drugs, although they only represent 1% of total cellular proteins. The first major bottleneck on the route to their functional and structural characterisation is their overexpression; and simply choosing the right system can involve many months of trial and error. This work is intended as a guide to where to start when faced with heterologous expression of a membrane protein. METHODOLOGY/PRINCIPAL FINDINGS: The expression of 20 membrane proteins, both peripheral and integral, in three prokaryotic (E. coli, L. lactis, R. sphaeroides) and three eukaryotic (A. thaliana, N. benthamiana, Sf9 insect cells) hosts was tested. The proteins tested were of various origins (bacteria, plants and mammals), functions (transporters, receptors, enzymes) and topologies (between 0 and 13 transmembrane segments). The Gateway system was used to clone all 20 genes into appropriate vectors for the hosts to be tested. Culture conditions were optimised for each host, and specific strategies were tested, such as the use of Mistic fusions in E. coli. 17 of the 20 proteins were produced at adequate yields for functional and, in some cases, structural studies. We have formulated general recommendations to assist with choosing an appropriate system based on our observations of protein behaviour in the different hosts. CONCLUSIONS/SIGNIFICANCE: Most of the methods presented here can be quite easily implemented in other laboratories. The results highlight certain factors that should be considered when selecting an expression host. The decision aide provided should help both newcomers and old-hands to select the best system for their favourite membrane protein
Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes
Understanding the mechanisms of multidrug resistance (MDR) could improve clinical drug efficacy. Multidrug resistance is associated with ATP binding cassette (ABC) transporters, but the factors that regulate their expression at clinically relevant drug concentrations are poorly understood. We report that a single-step selection with low doses of anti-cancer agents, similar to concentrations reported in vivo, induces MDR that is mediated exclusively by ABCG2. We selected breast, ovarian and colon cancer cells (MCF-7, IGROV-1 and S-1) after exposure to 14 or 21 nM doxorubicin for only 10 days. We found that these cells overexpress ABCG2 at the mRNA and protein levels. RNA interference analysis confirmed that ABCG2 confers drug resistance. Furthermore, ABCG2 upregulation was facilitated by histone hyperacetylation due to weaker histone deacetylase 1-promoter association, indicating that these epigenetic changes elicit changes in ABCG2 gene expression. These studies indicate that the MDR phenotype arises following low-dose, single-step exposure to doxorubicin, and further suggest that ABCG2 may mediate early stages of MDR development. This is the first report to our knowledge of single-step, low-dose selection leading to overexpression of ABCG2 by epigenetic changes in multiple cancer cell lines
Bedmap2: improved ice bed, surface and thickness datasets for Antarctica
We present Bedmap2, a new suite of gridded
products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60 S. We derived these products using data from a variety of sources, including many substantial surveys completed
since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made
from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica
the subglacial landscape is visible in much greater detail than was previously available and the improved datacoverage has in many areas revealed the full scale of mountain
ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice
contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar
to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72m lower and the area of ice
sheet grounded on bed below sea level is increased by 10 %.
The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower
than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets
- …