2,956 research outputs found

    Coherence properties of coupled optomechanical cavities

    Full text link
    In this work we investigate an optomechanical system consisting of two cavities coupled to the same mechanical resonator. We consider each cavity being weakly pumped as well as a small tunneling rate between the cavities. In such conditions, the system can be studied via quantum Langevin equations and the steady state solution can be found perturbatively. In order to ensure that the approximations and methods used to study the system are suitable, the analytical results were compared to numerical simulations. We study the statistical properties of the cavity radiation fields and we show that depending on the values of the parameters of the system, it is possible to modify the spectrum of the cavities and even enhance the sub-Poissonian character of the cavity field.Comment: 8 pages, 6 figure

    Improved limit on electron neutrino charge radius through a new evaluation of the weak mixing angle

    Full text link
    We have obtained a new limit on the electron neutrino effective charge radius from a new evaluation of the weak mixing angle by a combined fit of all electron-(anti)neutrino electron elastic scattering measurements. Weak mixing angle is found to be sin^2 theta_W=0.259 \pm 0.025 in the low energy regime below 100 MeV. The electron neutrino charge radius squared is bounded to be in the range -0.13 10^-32 cm^2 < r^2 < 3.32 10^-32 cm^2 at 90 % C.L. Both results improve previously published analyses. We also discuss perspectives of future experiments to improve these constraints.Comment: 10 pages, 2 figures. Final published versio

    An AER handshake-less modular infrastructure PCB with x8 2.5Gbps LVDS serial links

    Get PDF
    Nowadays spike-based brain processing emulation is taking off. Several EU and others worldwide projects are demonstrating this, like SpiNNaker, BrainScaleS, FACETS, or NeuroGrid. The larger the brain process emulation on silicon is, the higher the communication performance of the hosting platforms has to be. Many times the bottleneck of these system implementations is not on the performance inside a chip or a board, but in the communication between boards. This paper describes a novel modular Address-Event-Representation (AER) FPGA-based (Spartan6) infrastructure PCB (the AER-Node board) with 2.5Gbps LVDS high speed serial links over SATA cables that offers a peak performance of 32-bit 62.5Meps (Mega events per second) on board-to-board communications. The board allows back compatibility with parallel AER devices supporting up to x2 28-bit parallel data with asynchronous handshake. These boards also allow modular expansion functionality through several daughter boards. The paper is focused on describing in detail the LVDS serial interface and presenting its performance.Ministerio de Ciencia e Innovación TEC2009-10639-C04-02/01Ministerio de Economía y Competitividad TEC2012-37868-C04-02/01Junta de Andalucía TIC-6091Ministerio de Economía y Competitividad PRI-PIMCHI-2011-076

    Live Demonstration: Multiplexing AER Asynchronous Channels over LVDS Links with Flow-Control and Clock- Correction for Scalable Neuromorphic Systems

    Get PDF
    In this live demonstration we exploit the use of a serial link for fast asynchronous communication in massively parallel processing platforms connected to a DVS for realtime implementation of bio-inspired vision processing on spiking neural networks

    A USB3.0 FPGA Event-based Filtering and Tracking Framework for Dynamic Vision Sensors

    Get PDF
    Dynamic vision sensors (DVS) are frame-free sensors with an asynchronous variable-rate output that is ideal for hard real-time dynamic vision applications under power and latency constraints. Post-processing of the digital sensor output can reduce sensor noise, extract low level features, and track objects using simple algorithms that have previously been implemented in software. In this paper we present an FPGA-based framework for event-based processing that allows uncorrelated-event noise removal and real-time tracking of multiple objects, with dynamic capabilities to adapt itself to fast or slow and large or small objects. This framework uses a new hardware platform based on a Lattice FPGA which filters the sensor output and which then transmits the results through a super-speed Cypress FX3 USB microcontroller interface to a host computer. The packets of events and timestamps are transmitted to the host computer at rates of 10 Mega events per second. Experimental results are presented that demonstrate a low latency of 10us for tracking and computing the center of mass of a detected object.Ministerio de Economía y Competitividad TEC2012-37868-C04-0

    Using FPGA for visuo-motor control with a silicon retina and a humanoid robot

    Get PDF
    The address-event representation (AER) is a neuromorphic communication protocol for transferring asynchronous events between VLSI chips. The event information is transferred using a high speed digital parallel bus. This paper present an experiment based on AER for visual sensing, processing and finally actuating a robot. The AER output of a silicon retina is processed by an AER filter implemented into a FPGA to produce a mimicking behaviour in a humanoid robot (The RoboSapiens V2). We have implemented the visual filter into the Spartan II FPGA of the USB-AER platform and the Central Pattern Generator (CPG) into the Spartan 3 FPGA of the AER-Robot platform, both developed by authors.Unión Europea IST-2001-34124 (CAVIAR)Ministerio de Ciencia y Tecnología TIC-2003-08164-C03-0

    Isospin phases of vertically coupled double quantum rings under the influence of perpendicular magnetic fields

    Get PDF
    Vertically coupled double quantum rings submitted to a perpendicular magnetic field BB are addressed within the local spin-density functional theory. We describe the structure of quantum ring molecules containing up to 40 electrons considering different inter-ring distances and intensities of the applied magnetic field. When the rings are quantum mechanically strongly coupled, only bonding states are occupied and the addition spectrum of the artificial molecules resembles that of a single quantum ring, with some small differences appearing as an effect of the magnetic field. Despite the latter has the tendency to flatten the spectra, in the strong coupling limit some clear peaks are still found even when B0B\neq 0 that can be interpretated from the single-particle energy levels analogously as at zero applied field, namely in terms of closed-shell and Hund's-rule configurations. Increasing the inter-ring distance, the occupation of the first antibonding orbitals washes out such structures and the addition spectra become flatter and irregular. In the weak coupling regime, numerous isospin oscillations are found as a function of BB.Comment: 27 pages, 11 figures. To be published in Phys. Rev.
    corecore