Nowadays spike-based brain processing emulation is
taking off. Several EU and others worldwide projects are
demonstrating this, like SpiNNaker, BrainScaleS, FACETS, or
NeuroGrid. The larger the brain process emulation on silicon is,
the higher the communication performance of the hosting
platforms has to be. Many times the bottleneck of these system
implementations is not on the performance inside a chip or a
board, but in the communication between boards. This paper
describes a novel modular Address-Event-Representation (AER)
FPGA-based (Spartan6) infrastructure PCB (the AER-Node
board) with 2.5Gbps LVDS high speed serial links over SATA
cables that offers a peak performance of 32-bit 62.5Meps (Mega
events per second) on board-to-board communications. The
board allows back compatibility with parallel AER devices
supporting up to x2 28-bit parallel data with asynchronous
handshake. These boards also allow modular expansion
functionality through several daughter boards. The paper is
focused on describing in detail the LVDS serial interface and
presenting its performance.Ministerio de Ciencia e Innovación TEC2009-10639-C04-02/01Ministerio de Economía y Competitividad TEC2012-37868-C04-02/01Junta de Andalucía TIC-6091Ministerio de Economía y Competitividad PRI-PIMCHI-2011-076