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Abstract— The address-event representation (AER) is a 
neuromorphic communication protocol for transferring 
asynchronous events between VLSI chips. The event 
information is transferred using a high speed digital parallel 
bus. This paper present an experiment based on AER for 
visual sensing, processing and finally actuating a robot. The 
AER output of a silicon retina is processed by an AER filter 
implemented into a FPGA to produce a mimicking behaviour 
in a humanoid robot (The RoboSapiens V2). We have 
implemented the visual filter into the Spartan II FPGA of the 
USB-AER platform and the Central Pattern Generator (CPG) 
into the Spartan 3 FPGA of the AER-Robot platform, both 
developed by authors. 

I. INTRODUCTION

The Address-Event Representation (AER) was proposed 
by the Mead lab in 1991 [1] for communicating between 
neuromorphic chips with spikes (Fig. 1). Each time a cell on 
a sender device generates a spike, it communicates with the 
array periphery and a digital word representing a code or 
address for that pixel is placed on the external inter-chip 
digital bus (the AER bus). Additional handshaking lines 
(Acknowledge and Request) are used for completing the 
asynchronous communication. In the receiver chip the spikes 
are directed to the pixels whose code or address was on the 
bus. In this way, cells with the same address in the emitter 
and receiver chips are virtually connected by streams of 
spikes. These spikes can be used to communicate analog 
information using a rate code, but this is not a requirement. 
Cells that are more active access the bus more frequently 
than those less active. Arbitration circuits usually ensure that 
cells do not simultaneously access the bus. Usually these 
AER circuits are built using self-timed asynchronous logic 
by e.g. Boahen [2]. 

Transmitting the cell addresses allows performing extra 
operations on the events while they travel from one chip to 
another. For example the output of a silicon retina can be 
easily translated, scaled, or rotated by simple mapping 
operations on the emitted addresses. These mapping can 
either be lookup-based (using, e.g. an EEPROM) or 

algorithmic. Furthermore, the events transmitted by one chip 
can be received by many receiver chips in parallel, by 
properly handling the asynchronous communication 
protocol. There is a growing community of AER protocol 
users for bio-inspired applications in vision, audition systems 
and robot control, as demonstrated by the success in the last 
years of the AER group at the Neuromorphic Engineering 
Workshop series [3]. The goal of this community is to build 
large multi-chip and multi-layer hierarchically structured 
systems capable of performing massively-parallel data-
driven processing in real time [7]. 

Fig. 1 Rate-coded AER inter-chip communication scheme. 

The neuromorphic approach of AER can be also applied 
to actuators, like the muscles in the biology. In this paper we 
study a visual processing mechanism to detect the center of 
an object in movement using an AER retina and we also 
study the problem of controlling DC motors of a commercial 
toy, the RoboSapiens V2. 

The experiment that we present in this paper is based on 
connecting the AER output of the TmpDiff128 retina [5] to 
the USB-AER platform [7] and from there to the AER-Robot 
platform [6]. The USB-AER FPGA has been programmed 
with a new visual filter based on the architecture of the 
frame-grabber tool in [7]. This tool uses a state machine that 
receives events from the input AER bus and counts the 
number of events per pixel for a period of time. The tool can 
for example be used to bin AER output into images or 
frames for reconstruction. In the present case we added a 
simple object center detection algorithm to the frame grabber 
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tool that is based on the assumption that leading and trailing 
edges of a moving object generate opposite types of events. 
The algorithm calculates the address of the pixel with the 
maximum activity for both polarities of pixels that the retina 
returns (on-cells and off-cells) and returns the center point 
between these two pixels. 

The AER-Robot interface receives through the AER bus 
the computed position of the center of the object. According 
to the coordinates, the AER-Robot FPGA will signal to the 
DC motors to move the arms and the hip of the robot. This 
way the RoboSapiens V2 will mimic the movement of the 
object that is being seen by the retina. Fig. 2 shows a block 
diagram of the experiment. 

Fig. 2 Block diagram of the Visuo-motor experiment. 

In the following sections we discuss the tmpdiff128, the 
visual filter and the CPG. 

II. SILICON RETINA.
The main properties of the transient vision sensor are 

summarized in Table 1 and Fig. 3. Each address-event 
signifies a change in logarithmic intensity as given in (1) 

log I T∆ > (1)
where I is the pixel illumination and T is a global threshold. 
Each event thus means that logI changed by T since the last 
event and specifies in addition the sign of the change. Thus 
events generally encode scene reflectance changes. Because 
this computation is based on a very compressive logarithmic 
transformation in each pixel, it also allows for wide 
dynamic range operation (120 dB, compared with e.g. 60 dB 
for a high quality traditional image sensor). This wide 
dynamic range means that the sensor can be used with 
uncontrolled natural lighting. The asynchronous response 
property also means that the events have the timing 
precision of the pixel response rather than being quantized 
to the traditional frame rate. Thus the “effective frame rate” 
is typically several kHz. If the scene is not very “busy”, then 
the data rate can easily be a factor of 100 lower than from a 
frame-based image sensor of equivalent time resolution. The 
unique design of the pixel also allows for unprecedented 
uniformity of response. The mismatch between pixel 
contrast thresholds is a modest 2.1%, so that the pixel event 
threshold can be set to a few percent contrast, allowing the 
device to sense real-world contrast signals rather than only 
artificial high contrast stimuli. The vision sensor also has 

integrated digitally-controlled biases that greatly reduce 
chip-to-chip variation in parameters and temperature 
sensitivity. And finally, the system we built has a standard 
USB2.0 interface that delivers time-stamped address-events 
to a host PC. This combination of features has meant that 
we have had the possibility of developing algorithms for 
using the sensor output and testing them easily in a wide 
range of real-world scenarios.  

Fig. 3 Summarizes characteristics of Tmpdiff128 transient vision 
sensor. a) shows the vision sensor with its lens and USB2.0 interface; b) 

shows a die photograph labeled with the row and column from a pixel that 
generates an event with x,y,type output; c) shows an abstracted schematic 

of the pixel that responds with events to fixed-size changes of log intensity; 
d) illustrates how the ON and OFF events are internally represented and 

output in response to an input signal. Figure adapted from [1]. 

Table 1 Tmpdiff128 transient vision sensor specifications 
Functionality Asynchronous temporal contrast
Pixel size um (lambda) 
Fill factor (%) 

40x40 (200x200) 
9.4%%  

Fabrication process 4M 2P 0.35um 
Pixel complexity 26 transistors (14 analog), 3 

capacitors 
Array size 128x128 



Die size mm2 6x6.3 
Interface 15-bit word-parallel AERs
Power consumption 24mW @ 3.3V 
Dynamic range 120dB  

2 lux to > 100 klux scene 
illumination with f/1.2 lens 

Response latency 
Events/sec 

15µs @ 700mW/m2 
~1M events/sec 

FPN, matching 2.1% contrast 

III. AER VISUAL FILTER FOR FPGA.
This section describes how we filter the retina output to 

obtain the center of mass of the moving object. 

The USB-AER board collects events, calculates the pixel 
with maximum ‘on’ traffic and the one with maximum ‘off’ 
traffic. The center of mass of the object seen by the retina is 
computed simply by calculating the center point between 
both positive and negative maximum traffic points. To avoid 
errors produced by the retina when the traffic is low (because 
of ambient changes, like fluorescent lights) a threshold is 
included for calculating ‘on’ and ‘off’ minimum traffic. This 
calculation is made every 1.5 ms. 

Fig. 4 shows data from the retina in response to a moving 
ball (top row) and the output of the filter (bottom row) in 
response to the retina data. The images show slices of 20ms 
integrated output. Due to this relatively long time window, 
several events are visible even though the filter output is a 
single pixel at all times. 

Fig. 4 Filter images. The top row shows the input of the filter, the 
bottom row show the output of the filter. For visualization the bottom row  

is obtained by intergrating events during 20 ms. 

IV. AER CPG
This section describes the implementation of the Central 

Pattern Generation based on AER. The CPG receives as 
input the coordinate of the computed center of the object. 
The CPG produces an upward movement of the left robot 
arm in response to an upward movement of the center of an 
object detected in the left half of the visual field of the retina. 
Analogously the CPG produces downward movements of the 
left arm and up and down movements for the right arm. The 
CPG is implemented in VHDL and tested on an AER 
platform called AER-Robot (shown in Fig. 5 and Fig. 6). 
This new platform is an improved version of a prototype 
designed to control an anthropomorphic AER hand [6]. The 
platform is designed around a Spartan 3 400 FPGA with 4 
parallel AER connectors (2 input and 2 output), 4 power 

stages to manage 4 DC motors with two encoder channels 
and 4 hall effect current sensor to measure the power 
consumption of the motors. The interface also has 12 analog 
sensor inputs and 36 general purpose digital ports. 

With this FPGA, the interface is able to receive high 
AER rates, process them together with the input from the 
robot sensors and encoders and control the motors of the 
robot. 

The platform was developed as an interface between 
AER systems and robots using two AER buses: one for 
incoming events and another for outgoing information 
(events) about the state of the motors and the sensors. The 
input AER bus can be replicated into the output AER bus, 
called AER IN pt, to conveniently allow a chain of several 
boards connected by the AER buses. 

The CPG implemented in this platform make a decision 
about which arm to move and in which direction based on 
the trajectory of the last N events received from the AER 
visual filter implemented into the USB-AER platform. It 
could be possible that the noise produced by the retina due 
to visual noise around the object (like a fluorescent tube), 
could imply virtual objects detection by the visual filter that 
doesn’t follow a real trajectory. This behavior is filtered by 
the CPG by monitoring a number of events and ordering the 
movement of the arm if the trajectory is feasible. 

Fig. 5 Block diagram of the AER-Robot platform. 



Fig. 6 AER-Robot board photograph. 

Fig. 6 shows a photograph of the AER-Robot Interface 
PCB. The digital part of the PCB is in the middle. The board 
has a Cygnal 80C51F320 microcontroller for the analog to 
digital conversion (200Ksamples/second and 10-bits) of the 
sensor measurements and a USB port for the PC 
connectivity. 

The VHDL of the CPG is divided in two parts: (a) PWM 
(pulse width modulation) generation and (b) movement 
decision. 

(a) PWM. This part of the VHDL generates a PWM
signal for the DC motors in the direction and intensity 
configured by part (b). The PWM signal modulates the 
analog intensity of the DC motor using a digital periodic 
signal with two parameters: the period and the time that the 
signal is high for each period of time. A counter manages the 
period time of the PWM signal and a comparator controls 
the high time of the signal. 

(b) This part receives a sequence of events from the filter.
These events are coordinates of the center of the object 
detected. To be sure that the center comes from an object and 
it is not the result of noise in the AER retina, the filter only 
gives coordinates to the output if the traffic is higher than a 
threshold. The received coordinates are preprocessed to 
calculate the direction (up or down) of the movement. For 
the preprocessing, the last 4 events received are used. If the 
last 4 events indicate identical direction of movement, an 
order is given to part (a) to initiate a movement, else, a stop 
order is given to part (a). The possible trajectories are a left 
movement, a right movement and an up or down movement 
separated for the two halves of the visual field. The left and 
right movements are sent to the hip DC motor, and the up 
and down movements to the left and right arms. Fig. 7 shows 
this decision process. 

Fig. 7 CPG decision process for y-axis. If the moving pixel is in the 
right part of the scene, a signal to move the left arm will be sent. If the 

moving pixel is going up, a signal to move up the arm will be sent. 

V. CONCLUSIONS

We showed how a retina with a FPGA AER based 
processing can efficiently be used to process AER data in 
real time for object detection and robot movement. The 
whole system comprising an AER retina, two custom-made 
AER processing platforms and a humanoid toy robot was 
successfully tested during the Telluride Neuromorphic 
Engineering Workshop 2006. The AER-Robot platform has 
capacity enough to implement both the vision filter and the 
CPG in the same FPGA. 
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