39 research outputs found

    Perianal Crohn's disease and hidradenitis suppurativa: a possible common immunological scenario

    Get PDF
    Crohn's disease (CD) and Hidradenitis suppurativa (HS) are both chronic inflammatory diseases. The pathogenesis of these diseases is multifactorial, due to the interaction of genetic and environmental factors leading to a deregulated local immune response where T lymphocytes play a major role. To the best of our knowledge, no previous study has clarified whether the pathogenetic mechanism of perianal CD and HS is the same. We therefore analyzed the cellular expression pattern and the cytokine repertoire in three patients suffering from both perianal CD and HS

    bivalirudin inhibits thrombin mediated tissue factor expression in human endothelial cells

    Get PDF
    Thrombosis is the main pathophysiological mechanism in Acute Coronary Syndromes (ACS), and involves the activation of platelets and of Tissue Factor (TF)-dependent extrinsic coagulation pathway. TF-mRNA and antigen are detectable in the adventitia of normal vessels. On the contrary, little TF immunoreactivity is measurable in the smooth muscle cells of uninjured vessels and unperturbed endothelial cells, being in contact with circulating blood, usually do not express TF activity. However, several stimuli are able to induce TF in endothelial cells, including thrombin. Thus in an acute "scenario", thrombin might be responsible for creating a prothombotic milieau. Bivalirudin (BIVA) is a synthetic, reversible direct thrombin inhibitor actually considered a valuable alternative to heparins in patients who need anticoagulation in the setting of ACS and percutaneous coronary intervention to avoid acute thrombotic events. In the present study we have investigated whether BIVA, by inhibiting thrombin, might have effects on TF expression and procoagulant activity in endothelial cells. Human Umbilical Endothelial Cells (HUVEC) were stimulated with thrombin or with the activated coagulation factors FVIIa/FXa for 2 hrs to evaluate TF-mRNA transcription by real-time PCR and for 6 hrs to measure TF expression/activity on cell surface by FACs analysis and procoagulant activity. In additional experiments HUVEC were pre-treated with BIVA for 1 hr before being stimulated and processed as above. Thrombin induced TF-mRNA transcription as well TF expression/activity on HUVEC shifting them to a procoagulant phenotype. On the contrary, the activated coagulation factors FVIIa/FXa did not affect TF expression/activity, indicating that thrombin plays a pivotal role in mediating this phenomenon. BIVA was able to prevent these thrombin deleterious effects. Data of the present study, although in vitro, suggest that BIVA, in the context of ACS, might significantly reduce thrombogenicity not only by acting as direct thrombin inhibitor but through its effects on TF expression/activity too. </p

    Oxidized Low-Density Lipoproteins Induce Tissue Factor Expression in T-Lymphocytes via activation of Lectin-Like Oxidized Low-Density Lipoprotein Receptor-1

    Get PDF
    T-lymphocytes plays an important role in the pathophysiology of acute coronary syndromes (ACS). T-cell activation in vitro by pro-inflammatory cytokines may lead to functional Tissue Factor (TF) expression, indicating a possible contribution of immunity to thrombosis. Oxidized low-density lipoproteins (oxLDLs) are found abundantly in atherosclerotic plaques. We aimed at evaluating the effects of oxLDLs on TF expression in T-cells and the role of the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1)

    Receptor tyrosine kinase-dependent PI3K activation is an escape mechanism to vertical suppression of the EGFR/RAS/MAPK pathway in KRAS-mutated human colorectal cancer cell lines

    Get PDF
    Abstract BACKGROUND: Previous studies showed that the combination of an anti-Epidermal growth factor (EGFR) and a MEK-inhibitor is able to prevent the onset of resistance to anti-EGFR monoclonal antibodies in KRAS-wild type colorectal cancer (CRC), while the same combination reverts anti-EGFR primary resistance in KRAS mutated CRC cell lines. However, rapid onset of resistance is a limit to combination therapies in KRAS mutated CRC. METHODS: We generated four different KRAS mutated CRC cell lines resistant to a combination of cetuximab (an anti-EGFR antibody) and refametinib (a selective MEK-inhibitor) after continuous exposure to increasing concentration of the drugs. We characterized these resistant cell lines by evaluating the expression and activation status of a panel of receptor tyrosine kinases (RTKs) and intracellular transducers by immunoblot and qRT-PCR. Oncomine comprehensive assay and microarray analysis were carried out to investigate new acquired mutations or transcriptomic adaptation, respectively, in the resistant cell lines. Immunofluorescence assay was used to show the localization of RTKs in resistant and parental clones. RESULTS: We found that PI3K-AKT pathway activation acts as an escape mechanism in cell lines with acquired resistance to combined inhibition of EGFR and MEK. AKT pathway activation is coupled to the activation of multiple RTKs such as HER2, HER3 and IGF1R, though its pharmacological inhibition is not sufficient to revert the resistant phenotype. PI3K pathway activation is mediated by autocrine loops and by heterodimerization of multiple receptors. CONCLUSIONS: PI3K activation plays a central role in the acquired resistance to the combination of anti-EGFR and MEK-inhibitor in KRAS mutated colorectal cancer cell lines. PI3K activation is cooperatively achieved through the activation of multiple RTKs such as HER2, HER3 and IGF1R

    Probing the therapeutic potential of marine phyla by spe extraction

    Get PDF
    The marine environment is potentially a prolific source of small molecules with significant biological activities. In recent years, the development of new chromatographic phases and the progress in cell and molecular techniques have facilitated the search for marine natural products (MNPs) as novel pharmacophores and enhanced the success rate in the selection of new potential drug candidates. However, most of this exploration has so far been driven by anticancer research and has been limited to a reduced number of taxonomic groups. In this article, we report a test study on the screening potential of an in-house library of natural small molecules composed of 285 samples derived from 57 marine organisms that were chosen from among the major eukaryotic phyla so far represented in studies on bioactive MNPs. Both the extracts and SPE fractions of these organisms were simultaneously submitted to three different bioassays—two phenotypic and one enzymatic—for cytotoxic, antidiabetic, and antibacterial activity. On the whole, the screening of the MNP library selected 11 potential hits, but the distribution of the biological results showed that SPE fractionation increased the positive score regardless of the taxonomic group. In many cases, activity could be detected only in the enriched fractions after the elimination of the bulky effect due to salts. On a statistical basis, sponges and molluscs were confirmed to be the most significant source of cytotoxic and antimicrobial products, but other phyla were found to be effective with the other therapeutic target

    Chitinase 3-like-1 is produced by human Th17 cells and correlates with the level of inflammation in juvenile idiopathic arthritis patients

    Get PDF
    Background: CHI3L1 is a chitinase-like protein without enzymatic activity, produced by activated macrophages, chondrocytes, neutrophils. Recent studies on arthritis, asthma, and inflammatory bowel diseases suggest that chitinases are important in inflammatory processes and tissue remodeling, but their production by human T cells, has never been reported. Methods: A microarray analysis of gene expression profile was performed on Th17 and classic Th1 cell clones and CHI3L1 was found among the up-regulated genes on Th17 cells. Different types of helper T cell clones (TCCs) were then evaluated by Real Time PCR (RT-PCR) for CHI3L1 mRNA expression; protein expression was investigated in cell lysates by western blotting and in cultures supernatants by ELISA. ELISA was also used to measure CHI3L1 in the serum and in the synovial fluid (SF) of juvenile idiopathic arthritis (JIA) patients. Results: At mRNA level CHI3L1 was highly expressed by Th17, Th17/Th1, non classic Th1 and even in Th17/Th2 cell clones, whereas it was virtually absent in CD161- classic Th1 and Th2 TCCs. CHI3L1 was also detected in cell culture supernatants of Th17 and Th17-derived cells but not of classic Th1. Moreover CHI3L1 was higher in the SF than in serum of JIA patients, and it positively correlated with the frequency of Th17 and non-classic Th1 cells in SF. CHI3L1 in SF also positively correlated with the C reactive protein (CRP) serum levels, and with the levels of some proinflammatory cytokines, such as IL-6 and p40, which is the common subunit of IL12 and IL23. Conclusions: Here we describe for the first time CHI3L1 production by T cells owing the Th17 family. Moreover the positive correlation found between the frequency of Th17 and Th17-derived cell subsets and CHI3L1 levels in SF of JIA patients, in agreement with the suggested role of these cells in inflammatory process, candidates CHI3L1 as a possible biological target in JIA treatment

    Dual inhibition of TGFβ and AXL as a novel therapy for human colorectal adenocarcinoma with mesenchymal phenotype

    Get PDF
    A subset of colorectal cancer (CRC) with a mesenchymal phenotype (CMS4) displays an aggressive disease, with an increased risk of recurrence after surgery, reduced survival, and resistance to standard treatments. It has been shown that the AXL and TGFβ signaling pathways are involved in epithelial-to-mesenchymal transition, migration, metastatic spread, and unresponsiveness to targeted therapies. However, the prognostic role of the combination of these biomarkers and the anti-tumor effect of AXL and TGFβ inhibition in CRC still has to be assessed. To evaluate the role of AXL and TGFβ as negative biomarker in CRC, we conducted an in-depth in silico analysis of CRC samples derived from the Gene Expression Omnibus. We found that AXL and TGFβ receptors are upregulated in CMS4 tumors and are correlated with an increased risk of recurrence after surgery in stage II/III CRC and a reduced overall survival. Moreover, we showed that AXL receptor is differently expressed in human CRC cell lines. Dual treatment with the TGFβ galunisertib and the AXL inhibitor, bemcentinib, significantly reduced colony formation and migration capabilities of tumor cells and displayed a strong anti-tumor activity in 3D spheroid cultures derived from patients with advanced CRC. Our work shows that AXL and TGFβ receptors identify a subgroup of CRC with a mesenchymal phenotype and correlate with poor prognosis. Dual inhibition of AXL and TGFβ could represent a novel therapeutic strategy for patients with this aggressive disease
    corecore