383 research outputs found

    Vivianite (ferrous phosphate) alleviates iron chlorosis in grapevine

    Get PDF
    Synthetic vivianite [Fe3(PO4)2·8H2O] has been reported to alleviate iron (Fe) chlorosis in crops growing on calcareous soils. To test the effectiveness of vivianite in grapevine we carried out three-year (2003 to 2005) experiments in vineyards located in six different areas of Spain with Denomination of Origin (Rioja, Ribera del Duero, La Mancha, Montilla-Moriles, Condado de Huelva, and Jerez), which differed in grapevine rootstock/variety, climate, and soil properties. In all cases there was at least one treatment in which a suspension of vivianite was injected into the soil at the beginning of the experiment in spring, one control (“–Fe”, no Fe fertilizer added) treatment, and one or more treatments with Fe chelate (FeEDDHA) or an Fe(II) salt applied yearly. The concentration of chlorophyll per unit leaf area was estimated with a portable chlorophyll meter (readings in SPAD units). The SPAD value and the trunk perimeter increment of the vines fertilized with vivianite were significantly higher than those of the control (-Fe) vines through the three years in all fields except the Jerez one. Vivianite was not significantly more effective than Fe-sulfate (in Rioja field) or Fe chelate (in La Mancha field). Our results suggest in summary that vivianite is effective in improving the Fe nutrition of vine and has a significant long-lasting effect of at least three years. This is ascribed to vivianite being incongruently dissolved to produce a poorly crystalline Fe oxide phase (lepidocrocite), which is considered to be a good source of Fe to plant. Vivianite is effective, readily prepared in the field, not easily leached from the soil, cheap, and environmentally safe, constituting thus an adequate Fe fertilizer for grapevine.

    New Tetrahedral Global Minimum for the 98-atom Lennard-Jones Cluster

    Full text link
    A new atomic cluster structure corresponding to the global minimum of the 98-atom Lennard-Jones cluster has been found using a variant of the basin-hopping global optimization algorithm. The new structure has an unusual tetrahedral symmetry with an energy of -543.665361, which is 0.022404 lower than the previous putative global minimum. The new LJ_98 structure is of particular interest because its tetrahedral symmetry establishes it as one of only three types of exceptions to the general pattern of icosahedral structural motifs for optimal LJ microclusters. Similar to the other exceptions the global minimum is difficult to find because it is at the bottom of a narrow funnel which only becomes thermodynamically most stable at low temperature.Comment: 3 pages, 2 figures, revte

    Unbiased Global Optimization of Lennard-Jones Clusters for N <= 201 by Conformational Space Annealing Method

    Full text link
    We apply the conformational space annealing (CSA) method to the Lennard-Jones clusters and find all known lowest energy configurations up to 201 atoms, without using extra information of the problem such as the structures of the known global energy minima. In addition, the robustness of the algorithm with respect to the randomness of initial conditions of the problem is demonstrated by ten successful independent runs up to 183 atoms. Our results indicate that the CSA method is a general and yet efficient global optimization algorithm applicable to many systems.Comment: revtex, 4 pages, 2 figures. Physical Review Letters, in pres

    Influence of solar activity on hydrological processes

    No full text
    International audienceThe relationship between solar activity and the water volumes of lakes is searched here by means of correlational and spectral analysis methods. The level of two lakes, Pátzcuaro in México and Tchudskoye in Russia, together with solar activity indexes are used for the analysis. It is found that the source of the oscillation mechanism of the level of those lakes is the solar activity cycle through its influence on the magnetosphere and the terrestrial atmosphere. The present study allows for the development of long-period prognostic of water volumes of big lakes

    New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    Get PDF
    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many body physics. Unfortunately, the pair correlation function g(r)g(r) inferred from neutron scattering measurements of the differential cross section dσdΩd\sigma \over d\Omega from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43~meV and 16.1~meV on liquid hydrogen at 15.6~K (which is dominated by the parahydrogen component) using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1~meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra non-equilibrium component of orthohydrogen. Liquid parahydrogen is also a widely-used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. We describe our measurements and compare them with previous work.Comment: Edited for submission to Physical Review

    Arthropod biodiversity associated to Europen sheep production systems

    Get PDF
    The rural territories linked to European sheep systems still cover wide areas and provide multiple ecosystems services although the current situation of the associated biodiversity is not fully understood. In this study the foliage arthropods (including pollinators), the vegetation cover and height, the number of flowers and plant species richness were evaluated in 9 sheep grazed lands from 5 EU countries with different livestock management strategies and dominant vegetation. The total abundance of arthropods, the abundance of Diptera and Heteroptera, sward height and plant species richness were higher in more extensive than in more intensively managed farms. The total abundance and the abundance of most of the orders were highest in mountain areas (MP) and lowest in improved pastures (IMP) whereas the total arthropod richness showed no differences and the richness of pollinators was lower in IMP than in MP (p &lt; 0.01) and semi-natural pastures (SN, p &lt; 0.01). The grass cover was higher in IMP than in the rest of the areas whereas forb cover was higher in SN than in IMP (p &lt; 0.01). The plant species richness peaked in MP whereas the number of flowers showed no significant differences. Sward height correlated positively with forb cover, plant species richness, the richness of the whole arthropod community, the abundance of several orders like Araneae, Diptera or Homoptera, as well as with the richness of the pollinator community. The community composition of the total arthropod fauna (p &lt; 0.01) and the pollinators in particular (p &lt; 0.05) differed between management strategies and more diverse groups were linked to the areas under more extensive management. Both communities (total and pollinators) also differed in composition between the types of vegetation (p &lt; 0.01) and less diverse assemblages with low abundant taxa were associated to IMP and SN whereas more diverse groups were linked to MP and grassland-forest (WP) in both cases. A better understanding of the flora-fauna dynamics in sheep grazed pasturelands is essential for the proper conservation of the biodiversity and other ecosystem services, as well as for the maintenance of sustainable sheep systems relying on the natural resources

    Neutron Beta Decay Studies with Nab

    Full text link
    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.Comment: Submitted to Proceedings of the Conference CIPANP12, St.Petersburg, Florida, May 201

    High-Efficiency Resonant RF Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    Get PDF
    We have developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beam with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to RF neutron spin flippers based on adiabatic fast passage. The spin rotator does not change the kinetic energy of the neutrons and leaves the neutron beam phase space unchanged to high precision. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically-polarized 3He neutron spin filters. The efficiency of the spin rotator was measured to be 98.0+/-0.8% on resonance for neutron energies from 3.3 to 18.4 meV over the full phase space of the beam. As an example of the application of this device to an experiment we describe the integration of the RF spin rotator into an apparatus to search for the small parity-violating asymmetry A_gamma in polarized cold neutron capture on para-hydrogen by the NPDGamma collaboration at LANSCE
    corecore