155 research outputs found

    Reaction-diffusion dynamics: confrontation between theory and experiment in a microfluidic reactor

    Full text link
    We confront, quantitatively, the theoretical description of the reaction-diffusion of a second order reaction to experiment. The reaction at work is \ca/CaGreen, and the reactor is a T-shaped microchannel, 10 ÎĽ\mum deep, 200 ÎĽ\mum wide, and 2 cm long. The experimental measurements are compared with the two-dimensional numerical simulation of the reaction-diffusion equations. We find good agreement between theory and experiment. From this study, one may propose a method of measurement of various quantities, such as the kinetic rate of the reaction, in conditions yet inaccessible to conventional methods

    On two-dimensionalization of three-dimensional turbulence in shell models

    Full text link
    Applying a modified version of the Gledzer-Ohkitani-Yamada (GOY) shell model, the signatures of so-called two-dimensionalization effect of three-dimensional incompressible, homogeneous, isotropic fully developed unforced turbulence have been studied and reproduced. Within the framework of shell models we have obtained the following results: (i) progressive steepening of the energy spectrum with increased strength of the rotation, and, (ii) depletion in the energy flux of the forward forward cascade, sometimes leading to an inverse cascade. The presence of extended self-similarity and self-similar PDFs for longitudinal velocity differences are also presented for the rotating 3D turbulence case

    Examining the moderating effect of individual-level cultural values on users’ acceptance of E-learning in developing countries: a structural equation modeling of an extended technology acceptance model

    Get PDF
    In this study, we examine the effects of individual-level culture on the adoption and acceptance of e-learning tools by students in Lebanon using a theoretical framework based on the Technology Acceptance Model (TAM). To overcome possible limitations of using TAM in developing countries, we extend TAM to include subjective norms (SN) and quality of work life constructs as additional constructs and a number of cultural variables as moderators. The four cultural dimensions of masculinity/femininity (MF), individualism/collectivism, power distance and uncertainty avoidance were measured at the individual level to enable them to be integrated into the extended TAM as moderators and a research model was developed based on previous literature. To test the hypothesised model, data were collected from 569 undergraduate and postgraduate students using e-learning tools in Lebanon via questionnaire. The collected data were analysed using the structural equation modelling technique in conjunction with multi-group analysis. As hypothesised, the results of the study revealed perceived usefulness (PU), perceived ease of use (PEOU), SN and quality of work life to be significant determinants of students’ behavioural intention (BI) towards e-learning. The empirical results also demonstrated that the relationship between SN and BI was particularly sensitive to differences in individual-cultural values, with significant moderating effects observed for all four of the cultural dimensions studied. Some moderating effects of culture were also found for both PU and PEOU, however, contrary to expectations the effect of quality of work life was not found to be moderated by MF as some previous authors have predicted. The implications of these results to both theory and practice are explored in the paper

    Diffusion of e-health innovations in 'post-conflict' settings: a qualitative study on the personal experiences of health workers.

    Get PDF
    BACKGROUND: Technological innovations have the potential to strengthen human resources for health and improve access and quality of care in challenging 'post-conflict' contexts. However, analyses on the adoption of technology for health (that is, 'e-health') and whether and how e-health can strengthen a health workforce in these settings have been limited so far. This study explores the personal experiences of health workers using e-health innovations in selected post-conflict situations. METHODS: This study had a cross-sectional qualitative design. Telephone interviews were conducted with 12 health workers, from a variety of cadres and stages in their careers, from four post-conflict settings (Liberia, West Bank and Gaza, Sierra Leone and Somaliland) in 2012. Everett Roger's diffusion of innovation-decision model (that is, knowledge, persuasion, decision, implementation, contemplation) guided the thematic analysis. RESULTS: All health workers interviewed held positive perceptions of e-health, related to their beliefs that e-health can help them to access information and communicate with other health workers. However, understanding of the scope of e-health was generally limited, and often based on innovations that health workers have been introduced through by their international partners. Health workers reported a range of engagement with e-health innovations, mostly for communication (for example, email) and educational purposes (for example, online learning platforms). Poor, unreliable and unaffordable Internet was a commonly mentioned barrier to e-health use. Scaling-up existing e-health partnerships and innovations were suggested starting points to increase e-health innovation dissemination. CONCLUSIONS: Results from this study showed ICT based e-health innovations can relieve information and communication needs of health workers in post-conflict settings. However, more efforts and investments, preferably driven by healthcare workers within the post-conflict context, are needed to make e-health more widespread and sustainable. Increased awareness is necessary among health professionals, even among current e-health users, and physical and financial access barriers need to be addressed. Future e-health initiatives are likely to increase their impact if based on perceived health information needs of intended users

    Reaction Front in an A+B -> C Reaction-Subdiffusion Process

    Full text link
    We study the reaction front for the process A+B -> C in which the reagents move subdiffusively. Our theoretical description is based on a fractional reaction-subdiffusion equation in which both the motion and the reaction terms are affected by the subdiffusive character of the process. We design numerical simulations to check our theoretical results, describing the simulations in some detail because the rules necessarily differ in important respects from those used in diffusive processes. Comparisons between theory and simulations are on the whole favorable, with the most difficult quantities to capture being those that involve very small numbers of particles. In particular, we analyze the total number of product particles, the width of the depletion zone, the production profile of product and its width, as well as the reactant concentrations at the center of the reaction zone, all as a function of time. We also analyze the shape of the product profile as a function of time, in particular its unusual behavior at the center of the reaction zone

    Monitoring the orientation of rare-earth-doped nanorods for flow shear tomography

    Get PDF
    Rare-earth phosphors exhibit unique luminescence polarization features originating from the anisotropic symmetry of the emitter ion's chemical environment. However, to take advantage of this peculiar property, it is necessary to control and measure the ensemble orientation of the host particles with a high degree of precision. Here, we show a methodology to obtain the photoluminescence polarization of Eu-doped LaPO4 nano rods assembled in an electrically modulated liquid-crystalline phase. We measure Eu3+ emission spectra for the three main optimal configurations ({\sigma}, {\pi} and {\alpha}, depending on the direction of observation and the polarization axes) and use them as a reference for the nano rod orientation analysis. Based on the fact that flowing nano rods tend to orient along the shear strain profile, we use this orientation analysis to measure the local shear rate in a flowing liquid. The potential of this approach is then demonstrated through tomographic imaging of the shear rate distribution in a microfluidic system.Comment: 8 pages, 3 figures + supplementary files for experimental and numerical method

    Adding functionality with additive manufacturing : fabrication of titanium-based antibiotic eluting implants

    Get PDF
    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved the compressive strength (5.8±0.7MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6hour period (<28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16μg/mL) and Staphylococcus epidermidis (1μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections

    Vertebroplasty: patient and treatment variations studied through parametric computational models

    Get PDF
    Background Vertebroplasty is increasingly used in the treatment of vertebral compression fractures. However there are concerns that this intervention may lead to further fractures in the adjacent vertebral segments. This study was designed to parametrically assess the influence of both treatment factors (cement volume and number of augmentations), and patient factors (bone and disc quality) on the biomechanical effects of vertebroplasty. Methods Specimen-specific finite element models of two experimentally-tested human three-vertebral-segments were developed from CT-scan data. Cement augmentation at one and two levels was represented in the respective models and good agreement in the predicted stiffness was found compared to the corresponding experimental specimens. Parametric variations of key variables associated with the procedure were then studied. Findings The segmental stiffness increased with disc degeneration, with increasing bone quality and to a lesser extent with increasing cement volume. Cement modulus did not have a great influence on the overall segmental stiffness and on the change in the elemental stress in the adjoining vertebrae. However, following augmentation, the stress distribution in the adjacent vertebra changed, indicating possible load redistribution effects of vertebroplasty. Interpretation This study demonstrates the importance of patient factors in the outcomes of vertebroplasty and suggests that these may be one reason for the variation in clinical results
    • …
    corecore