1,520 research outputs found

    On the Informational Content of Changing Risk for Dynamic Asset Allocation

    Get PDF
    The informational content of changing risk for dynmaic asset allocation is analyzed in order to investigate its importance in determining expected index returns. We consider a class of optimal dynamic strategies taking into account both changing risk and expected returns that vary accordingly to changing risk. We compare their risk adjusted performance to that of a buy and hold strategy under different hypotheses on the form of conditionally expected returns. The statistical evidence in favour of expected returns varying accordingly to changing risk is elusive. On the other hand, we find some evidence of a superior unconditional risk adjusted performance of volatility based trading rules compared to buy and hold strategies. This suggests that changing risk conveys information useful to improve performance.

    Coherent emission from disordered arrays of driven Josephson vortices

    Full text link
    We propose a mechanism of coherent emission from driven vortices in stacked intrinsic Josephson junctions. In contrast to super-radiance, which occurs only for highly ordered vortex lattices, we predict resonant radiation emission from weakly correlated vortex arrays. Our analytical results for the THz wave intensity, resonance frequencies, and the dependence of THz emission power on dissipation are in good agreement with the ones obtained by recent simulations.Comment: 2 figure

    Intranasal rapamycin ameliorates Alzheimer-like cognitive decline in a mouse model of Down syndrome

    Get PDF
    Background: Down syndrome (DS) individuals, by the age of 40s, are at increased risk to develop Alzheimer-like dementia, with deposition in brain of senile plaques and neurofibrillary tangles. Our laboratory recently demonstrated the disturbance of PI3K/AKT/mTOR axis in DS brain, prior and after the development of Alzheimer Disease (AD). The aberrant modulation of the mTOR signalling in DS and AD age-related cognitive decline affects crucial neuronal pathways, including insulin signaling and autophagy, involved in pathology onset and progression. Within this context, the therapeutic use of mTOR-inhibitors may prevent/attenuate the neurodegenerative phenomena. By our work we aimed to rescue mTOR signalling in DS mice by a novel rapamycin intranasal administration protocol (InRapa) that maximizes brain delivery and reduce systemic side effects. Methods: Ts65Dn mice were administered with InRapa for 12 weeks, starting at 6 months of age demonstrating, at the end of the treatment by radial arms maze and novel object recognition testing, rescued cognition. Results: The analysis of mTOR signalling, after InRapa, demonstrated in Ts65Dn mice hippocampus the inhibition of mTOR (reduced to physiological levels), which led, through the rescue of autophagy and insulin signalling, to reduced APP levels, APP processing and APP metabolites production, as well as, to reduced tau hyperphosphorylation. In addition, a reduction of oxidative stress markers was also observed. Discussion: These findings demonstrate that chronic InRapa administration is able to exert a neuroprotective effect on Ts65Dn hippocampus by reducing AD pathological hallmarks and by restoring protein homeostasis, thus ultimately resulting in improved cognition. Results are discussed in term of a potential novel targeted therapeutic approach to reduce cognitive decline and AD-like neuropathology in DS individuals

    The Primacy of High b-Value 3T-DWI Radiomics in the Prediction of Clinically Significant Prostate Cancer

    Get PDF
    Predicting clinically significant prostate cancer (csPCa) is crucial in PCa management. 3T-magnetic resonance (MR) systems may have a novel role in quantitative imaging and early csPCa prediction, accordingly. In this study, we develop a radiomic model for predicting csPCa based solely on native b2000 diffusion weighted imaging (DWIb2000) and debate the effectiveness of apparent diffusion coefficient (ADC) in the same task. In total, 105 patients were retrospectively enrolled between January–November 2020, with confirmed csPCa or ncsPCa based on biopsy. DWIb2000 and ADC images acquired with a 3T-MRI were analyzed by computing 84 local first-order radiomic features (RFs). Two predictive models were built based on DWIb2000 and ADC, separately. Relevant RFs were selected through LASSO, a support vector machine (SVM) classifier was trained using repeated 3-fold cross validation (CV) and validated on a holdout set. The SVM models rely on a single couple of uncorrelated RFs (ρ < 0.15) selected through Wilcoxon rank-sum test (p ≤ 0.05) with Holm–Bonferroni correction. On the holdout set, while the ADC model yielded AUC = 0.76 (95% CI, 0.63–0.96), the DWIb2000 model reached AUC = 0.84 (95% CI, 0.63–0.90), with specificity = 75%, sensitivity = 90%, and informedness = 0.65. This study establishes the primary role of 3T-DWIb2000 in PCa quantitative analyses, whilst ADC can remain the leading sequence for detection

    It Is All About (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease

    Get PDF
    Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency of degradative systems. One of the most important cellular proteolytic systems responsible for the removal of oxidized proteins in the cytosol and in the nucleus is the proteasomal system. Several studies have demonstrated the impairment of the proteasome in AD thus suggesting a direct link between accumulation of oxidized/misfolded proteins and reduction of this clearance system. In this review we discuss the impairment of the proteasome system as a consequence of oxidative stress and how this contributes to AD neuropathology. Further, we focus the attention on the oxidative modifications of a key component of the ubiquitin-proteasome pathway, UCHL1, which lead to the impairment of its activity

    Tuning of dye optical properties by environmental effects: a QM/MM and experimental study

    Get PDF
    The present work is aimed to a deeper investigation of two recently synthesized heteroaromatic fluorophores by means of a computational multilayer approach, integrating quantum mechanics (QM) and molecular mechanics (MM). In particular, dispersion of the title dyes in a polymer matrix is studied in connection with potential applications as photoactive species in luminescent solar concentrators (LSCs). Molecular dynamics simulations, based on accurate QM-derived force fields, reveal increased stiffness of these organic dyes when going from CHCl3 solution to polymer matrix. QM/MM computations of UV spectra for snapshots extracted from MD simulations show that this different flexibility permits to explain the different spectral shapes obtained experimentally for the two different environments. Moreover, the general spectroscopic trends are well reproduced by static computations employing a polarizable continuum description of environmental effects

    In planta production of two peptides of the Classical Swine Fever Virus (CSFV) E2 glycoprotein fused to the coat protein of potato virus X

    Get PDF
    BACKGROUND: Classical Swine Fever (CSFV) is one of the most important viral infectious diseases affecting wild boars and domestic pigs. The etiological agent of the disease is the CSF virus, a single stranded RNA virus belonging to the family Flaviviridae. All preventive measures in domestic pigs have been focused in interrupting the chain of infection and in avoiding the spread of CSFV within wild boars as well as interrupting transmission from wild boars to domestic pigs. The use of plant based vaccine against CSFV would be advantageous as plant organs can be distributed without the need of particular treatments such as refrigeration and therefore large areas, populated by wild animals, could be easily covered. RESULTS: We report the in planta production of peptides of the classical swine fever (CSF) E2 glycoprotein fused to the coat protein of potato virus X. RT-PCR studies demonstrated that the peptide encoding sequences are correctly retained in the PVX construct after three sequential passage in Nicotiana benthamiana plants. Sequence analysis of RT-PCR products confirmed that the epitope coding sequences are replicated with high fidelity during PVX infection. Partially purified virions were able to induce an immune response in rabbits. CONCLUSION: Previous reports have demonstrated that E2 synthetic peptides can efficiently induce an immunoprotective response in immunogenized animals. In this work we have showed that E2 peptides can be expressed in planta by using a modified PVX vector. These results are particularly promising for designing strategies for disease containment in areas inhabited by wild boars

    Hay or silage? How the forage preservation method changes the volatile compounds and sensory properties of Caciocavallo cheese.

    Get PDF
    The aim of this study was to determine the effect of the forage preservation method (silage vs. hay) on volatile compounds and sensory properties of a traditional Caciocavallo cheese during ripening. A brown-midrib sudangrass hybrid was cultivated on a 7-ha field and at harvesting it was half ensiled in plastic silo bags and half dried to hay. Forty-four lactating cows were equally allotted into 2 groups fed a isonitrogenous and isoenergetic total mixed ration containing as the sole forage either sorghum hay (H group) or sorghum silage (S group). Milk from the 2 groups was used to produce 3 batches/diet of Caciocavallo ripened for 30, 60, and 90 d. Milk yield and composition as well as cheese chemical and fatty acid composition were not markedly affected by the diet treatment and ripening time. By contrast, ripening induced increased levels of the appearance attribute "yellowness," along with the "overall flavor," the odor/flavor attributes "butter" and "hay," the "salty," "bitter," and "umami" tastes, and the texture attribute "oiliness," whereas the appearance attribute "uniformity" and the texture attribute "elasticity" were reduced. The silage-based diet induced higher perceived intensities of several attributes such as "yellowness"; "overall flavor"; "butter"; "grass" and "hay" odor/flavors; "salty," "bitter," and "umami" tastes; and "tenderness" and "oiliness" textures. In S cheese we also observed higher amounts of ketones and fatty acids. Conversely, H cheese showed the terpene α-pinene, which was not detected in S cheese, and a higher intensity of the appearance attribute "uniformity." These differences allowed the trained panel to discriminate the products, determined an increased consumer liking for 90-d ripened cheese, and tended to increase consumer liking for hay cheese
    corecore