788 research outputs found

    Retrodiction of Generalised Measurement Outcomes

    Full text link
    If a generalised measurement is performed on a quantum system and we do not know the outcome, are we able to retrodict it with a second measurement? We obtain a necessary and sufficient condition for perfect retrodiction of the outcome of a known generalised measurement, given the final state, for an arbitrary initial state. From this, we deduce that, when the input and output Hilbert spaces have equal (finite) dimension, it is impossible to perfectly retrodict the outcome of any fine-grained measurement (where each POVM element corresponds to a single Kraus operator) for all initial states unless the measurement is unitarily equivalent to a projective measurement. It also enables us to show that every POVM can be realised in such a way that perfect outcome retrodiction is possible for an arbitrary initial state when the number of outcomes does not exceed the output Hilbert space dimension. We then consider the situation where the initial state is not arbitrary, though it may be entangled, and describe the conditions under which unambiguous outcome retrodiction is possible for a fine-grained generalised measurement. We find that this is possible for some state if the Kraus operators are linearly independent. This condition is also necessary when the Kraus operators are non-singular. From this, we deduce that every trace-preserving quantum operation is associated with a generalised measurement whose outcome is unambiguously retrodictable for some initial state, and also that a set of unitary operators can be unambiguously discriminated iff they are linearly independent. We then examine the issue of unambiguous outcome retrodiction without entanglement. This has important connections with the theory of locally linearly dependent and locally linearly independent operators.Comment: To appear in Physical Review

    Extraction of the D13(1520) photon-decay couplings from pion- and eta-photoproduction data

    Get PDF
    We compare results for the D13(1520) photon-decay amplitudes determined in analyses of eta- and pion-photoproduction data. The ratio of helicity amplitudes (A_3/2 / A_1/2), determined from eta-photoproduction data, is quite different from that determined in previous analyses of pion-photoproduction data. We consider how strongly the existing pion-photoproduction data constrain both this ratio and the individual photon-decay amplitudes.Comment: 7 pages, 2 figure

    The minimum-error discrimination via Helstrom family of ensembles and Convex Optimization

    Full text link
    Using the convex optimization method and Helstrom family of ensembles introduced in Ref. [1], we have discussed optimal ambiguous discrimination in qubit systems. We have analyzed the problem of the optimal discrimination of N known quantum states and have obtained maximum success probability and optimal measurement for N known quantum states with equiprobable prior probabilities and equidistant from center of the Bloch ball, not all of which are on the one half of the Bloch ball and all of the conjugate states are pure. An exact solution has also been given for arbitrary three known quantum states. The given examples which use our method include: 1. Diagonal N mixed states; 2. N equiprobable states and equidistant from center of the Bloch ball which their corresponding Bloch vectors are inclined at the equal angle from z axis; 3. Three mirror-symmetric states; 4. States that have been prepared with equal prior probabilities on vertices of a Platonic solid. Keywords: minimum-error discrimination, success probability, measurement, POVM elements, Helstrom family of ensembles, convex optimization, conjugate states PACS Nos: 03.67.Hk, 03.65.TaComment: 15 page

    Entanglement and purity of two-mode Gaussian states in noisy channels

    Get PDF
    We study the evolution of purity, entanglement and total correlations of general two--mode Gaussian states of continuous variable systems in arbitrary uncorrelated Gaussian environments. The time evolution of purity, Von Neumann entropy, logarithmic negativity and mutual information is analyzed for a wide range of initial conditions. In general, we find that a local squeezing of the bath leads to a faster degradation of purity and entanglement, while it can help to preserve the mutual information between the modes.Comment: 10 pages, 8 figure

    Resonance fluorescence of a trapped three-level atom

    Get PDF
    We investigate theoretically the spectrum of resonance fluorescence of a harmonically trapped atom, whose internal transitions are Λ\Lambda--shaped and driven at two-photon resonance by a pair of lasers, which cool the center--of--mass motion. For this configuration, photons are scattered only due to the mechanical effects of the quantum interaction between light and atom. We study the spectrum of emission in the final stage of laser--cooling, when the atomic center-of-mass dynamics is quantum mechanical and the size of the wave packet is much smaller than the laser wavelength (Lamb--Dicke limit). We use the spectral decomposition of the Liouville operator of the master equation for the atomic density matrix and apply second order perturbation theory. We find that the spectrum of resonance fluorescence is composed by two narrow sidebands -- the Stokes and anti-Stokes components of the scattered light -- while all other signals are in general orders of magnitude smaller. For very low temperatures, however, the Mollow--type inelastic component of the spectrum becomes visible. This exhibits novel features which allow further insight into the quantum dynamics of the system. We provide a physical model that interprets our results and discuss how one can recover temperature and cooling rate of the atom from the spectrum. The behaviour of the considered system is compared with the resonance fluorescence of a trapped atom whose internal transition consists of two-levels.Comment: 11 pages, 4 Figure

    Determination of the high-twist contribution to the structure function xF3νNxF^{\nu N}_3

    Get PDF
    We extract the high-twist contribution to the neutrino-nucleon structure function xF3(ν+νˉ)NxF_3^{(\nu+\bar{\nu})N} from the analysis of the data collected by the IHEP-JINR Neutrino Detector in the runs with the focused neutrino beams at the IHEP 70 GeV proton synchrotron. The analysis is performed within the infrared renormalon (IRR) model of high twists in order to extract the normalization parameter of the model. From the NLO QCD fit to our data we obtained the value of the IRR model normalization parameter Λ32=0.69±0.37 (exp)±0.16 (theor) GeV2\Lambda^2_{3}=0.69\pm0.37~({\rm exp})\pm0.16~({\rm theor})~{\rm GeV}^2. We also obtained Λ32=0.36±0.22 (exp)±0.12 (theor) GeV2\Lambda^2_{3}=0.36\pm0.22~({\rm exp})\pm0.12~({\rm theor})~{\rm GeV}^2 from a similar fit to the CCFR data. The average of both results is Λ32=0.44±0.19 (exp) GeV2\Lambda^2_{3}=0.44\pm0.19~({\rm exp})~{\rm GeV}^2.Comment: preprint IHEP-01-18, 7 pages, LATEX, 1 figure (EPS

    Tomographic Quantum Cryptography

    Full text link
    We present a protocol for quantum cryptography in which the data obtained for mismatched bases are used in full for the purpose of quantum state tomography. Eavesdropping on the quantum channel is seriously impeded by requiring that the outcome of the tomography is consistent with unbiased noise in the channel. We study the incoherent eavesdropping attacks that are still permissible and establish under which conditions a secure cryptographic key can be generated. The whole analysis is carried out for channels that transmit quantum systems of any finite dimension.Comment: REVTeX4, 9 pages, 3 figures, 1 tabl

    Optimal discrimination of mixed quantum states involving inconclusive results

    Get PDF
    We propose a generalized discrimination scheme for mixed quantum states. In the present scenario we allow for certain fixed fraction of inconclusive results and we maximize the success rate of the quantum-state discrimination. This protocol interpolates between the Ivanovic-Dieks-Peres scheme and the Helstrom one. We formulate the extremal equations for the optimal positive operator valued measure describing the discrimination device and establish a criterion for its optimality. We also devise a numerical method for efficient solving of these extremal equations.Comment: 5 pages, 1 figur

    Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities

    Get PDF
    We study the mutual interaction of a Bose-Einstein condensed gas with a single mode of a high-finesse optical cavity. We show how the cavity transmission reflects condensate properties and calculate the self-consistent intra-cavity light field and condensate evolution. Solving the coupled condensate-cavity equations we find that while falling through the cavity, the condensate is adiabatically transfered into the ground state of the periodic optical potential. This allows time dependent non-destructive measurements on Bose-Einstein condensates with intriguing prospects for subsequent controlled manipulation.Comment: 5 pages, 5 figures; revised version: added reference
    corecore