260 research outputs found

    HD 179949b - a close orbiting extrasolar giant planet with a stratosphere?

    Get PDF
    The original article can be found at: http://www3.interscience.wiley.com Copyright Blackwell Publishing. DOI: 10.1111/j.1365-2966.2008.13831.xWe have carried out a search for the 2.14-μm spectroscopic signature of the close orbiting extrasolar giant planet, HD179949b. High-cadence time-series spectra were obtained with the Cryogenic high-resolution InfraRed ´ Echelle Spectrograph at Very Large Telescope, Unit 1 on two closely separated nights. Deconvolution yielded spectroscopic profiles with mean signal-to-noise ratios of several thousand, enabling the near-infrared contrast ratios predicted for the HD179949 system to be achieved. Recent models have predicted that the hottest planets may exhibit spectral signatures in emission due to the presence of TiO and VO which may be responsible for a temperature inversion high in the atmosphere.We have used our phase-dependent orbital model and tomographic techniques to search for the planetary signature under the assumption of an absorption line dominated atmospheric spectrum, where T and V are depleted from the atmospheric model, and an emission line dominated spectrum, where TiO and VO are present. We do not detect a planet in either case, but the 2.120–2.174-μm wavelength region covered by our observations enables the deepest near-infrared limits yet to be placed on the planet/star contrast ratio of any close orbiting extrasolar giant planet system. We are able to rule out the presence of an atmosphere dominated by absorption opacities in the case of HD179949b at a contrast ratio of Fp/F∗ ∼ 1/3350, with 99 per cent confidence.Peer reviewe

    Possible liquid immiscibility textures in high-magnesia basalts from the Ventersdorp Supergroup, South Africa

    Get PDF
    The lowermost succession of lavas in the Proterozoic Ventersdorp Supergroup contains light weathering ocelli up to 15 cm in diameter which occur in layers of a darker weathering volcanic material. Some ocelli appear to merge, and discrete light weathering layers may be the ultimate end-stage of this coalescence. Alternatively, coexisting magmas in the neck of the volcano may have been erupted in varying proportions, and turbulence during flow caused spalling of large drops of the lighter weathering material into the other. Several lines of field evidence suggest that two distinct liquids coexisted and were rapidly quenched after eruption. Chemical data for ocelli and matrix are consistent with the hypothesis of liquid immiscibility. The differences in compositions between the coexisting pairs of liquids are small and it is suggested that the original magmas must have been close to the consulute composition

    Prevalence of Tritrichomonas foetus in beef bulls slaughtered at two abattoirs in northern Australia

    Get PDF
    Bovine trichomoniasis, caused by the protozoal parasite Tritrichomonas foetus, is a highly contagious venereal disease characterised by early pregnancy loss, abortion and pyometra. Persistently infected bulls and cows are the primary reservoirs of infection in infected herds. This research investigated the prevalence of T. foetus infection in bulls from properties located across northern Australia and New South Wales. Preputial samples were collected from 606 bulls at slaughter and tested for T. foetus using the VetMAX-Gold Trich Detection Kit (Thermo Fisher Scientific). The apparent prevalence of T. foetus infection varied between regions, with northern regions in the Northern Territory, Queensland and Western Australia showing a prevalence of 15.4%, 13.8% and 11.4%, respectively. There was some evidence of an association between infection and postcode (P = 0.06) and increasing bull age (P = 0.054). This study confirms that T. foetus infection is likely to be present in many beef breeding herds and contributing to lower than expected reproductive performance, particularly across northern Australia

    Parallelization, Special Hardware and Post-Newtonian Dynamics in Direct N - Body Simulations

    Get PDF
    The formation and evolution of supermassive black hole (SMBH) binaries during and after galaxy mergers is an important ingredient for our understanding of galaxy formation and evolution in a cosmological context, e.g. for predictions of cosmic star formation histories or of SMBH demographics (to predict events that emit gravitational waves). If galaxies merge in the course of their evolution, there should be either many binary or even multiple black holes, or we have to find out what happens to black hole multiples in galactic nuclei, e.g. whether they come sufficiently close to merge resulting from emission of gravitational waves, or whether they eject each other in gravitational slingshot interactions

    A pilgrimage to gravity on GPUs

    Get PDF
    In this short review we present the developments over the last 5 decades that have led to the use of Graphics Processing Units (GPUs) for astrophysical simulations. Since the introduction of NVIDIA's Compute Unified Device Architecture (CUDA) in 2007 the GPU has become a valuable tool for N-body simulations and is so popular these days that almost all papers about high precision N-body simulations use methods that are accelerated by GPUs. With the GPU hardware becoming more advanced and being used for more advanced algorithms like gravitational tree-codes we see a bright future for GPU like hardware in computational astrophysics.Comment: To appear in: European Physical Journal "Special Topics" : "Computer Simulations on Graphics Processing Units" . 18 pages, 8 figure

    Roles of Fast-Cyclotron and Alfven-Cyclotron Waves for the Multi-Ion Solar Wind

    Full text link
    Using linear Vlasov theory of plasma waves and quasi-linear theory of resonant wave-particle interaction, the dispersion relations and the electromagnetic field fluctuations of fast and Alfven waves are studied for a low-beta multi-ion plasma in the inner corona. Their probable roles in heating and accelerating the solar wind via Landau and cyclotron resonances are quantified. We assume that (1) low-frequency Alfven and fast waves have the same spectral shape and the same amplitude of power spectral density; (2) these waves eventually reach ion cyclotron frequencies due to a turbulence cascade; (3) kinetic wave-particle interaction powers the solar wind. The existence of alpha particles in a dominant proton/electron plasma can trigger linear mode conversion between oblique fast-whistler and hybrid alpha-proton cyclotron waves. The fast-cyclotron waves undergo both alpha and proton cyclotron resonances. The alpha cyclotron resonance in fast-cyclotron waves is much stronger than that in Alfven-cyclotron waves. For alpha cyclotron resonance, an oblique fast-cyclotron wave has a larger left-handed electric field fluctuation, a smaller wave number, a larger local wave amplitude, and a greater energization capability than a corresponding Alfven-cyclotron wave at the same wave propagation angle \theta, particularly at 8080^\circ < \theta < 9090^\circ. When Alfven-cyclotron or fast-cyclotron waves are present, alpha particles are the chief energy recipient. The transition of preferential energization from alpha particles to protons may be self-modulated by differential speed and temperature anisotropy of alpha particles via the self-consistently evolving wave-particle interaction. Therefore, fast-cyclotron waves as a result of linear mode coupling is a potentially important mechanism for preferential energization of minor ions in the main acceleration region of the solar wind.Comment: 29 pages, 10 figures, 3 tables. Accepted for publication in Solar Physic

    Hole Dispersions for Antiferromagnetic Spin-1/2 Two-Leg Ladders by Self-Similar Continuous Unitary Transformations

    Full text link
    The hole-doped antiferromagnetic spin-1/2 two-leg ladder is an important model system for the high-TcT_c superconductors based on cuprates. Using the technique of self-similar continuous unitary transformations we derive effective Hamiltonians for the charge motion in these ladders. The key advantage of this technique is that it provides effective models explicitly in the thermodynamic limit. A real space restriction of the generator of the transformation allows us to explore the experimentally relevant parameter space. From the effective Hamiltonians we calculate the dispersions for single holes. Further calculations will enable the calculation of the interaction of two holes so that a handle of Cooper pair formation is within reach.Comment: 16 pages, 26 figure

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011
    corecore