827 research outputs found

    Evaluation of Long Composite Struts

    Get PDF
    Carbon-epoxy tapered struts are structurally efficient and offer opportunities for weight savings on aircraft and spacecraft structures. Seven composite struts were designed, fabricated and experimentally evaluated through uniaxial loading. The design requirements, analytical predictions and experimental results are presented. Struts with a tapered composite body and corrugated titanium end fittings successfully supported their design ultimate loads with no evidence of failure

    Solitonic supersymmetry restoration

    Full text link
    Q-balls are a possible feature of any model with a conserved, global U(1) symmetry and no massless, charged scalars. It is shown that for a broad class of models of metastable supersymmetry breaking they are extremely influential on the vacuum lifetime and make seemingly viable vacua catastrophically short lived. A net charge asymmetry is not required as there is often a significant range of parameter space where statistical fluctuations alone are sufficient. This effect is examined for two supersymmetry breaking scenarios. It is found that models of minimal gauge mediation (which necessarily have a messenger number U(1)) undergo a rapid, supersymmetry restoring phase transition unless the messenger mass is greater than 10^8 GeV. Similarly the ISS model, in the context of direct mediation, quickly decays unless the perturbative superpotential coupling is greater than the Standard Model gauge couplings.Comment: 17 pages, 3 figures, minor comments added, accepted for publication in JHE

    Airborne Aerosol in Situ Measurements during TCAP: A Closure Study of Total Scattering

    Get PDF
    We present a framework for calculating the total scattering of both non-absorbing and absorbing aerosol at ambient conditions from aircraft data. Our framework is developed emphasizing the explicit use of chemical composition data for estimating the complex refractive index (RI) of particles, and thus obtaining improved ambient size spectra derived from Optical Particle Counter (OPC) measurements. The feasibility of our framework for improved calculations of total scattering is demonstrated using three types of data collected by the U.S. Department of Energy’s (DOE) aircraft during the Two-Column Aerosol Project (TCAP). Namely, these data types are: (1) size distributions measured by a suite of OPC’s; (2) chemical composition data measured by an Aerosol Mass Spectrometer and a Single Particle Soot Photometer; and (3) the dry total scattering coefficient measured by a integrating nephelometer and scattering enhancement factor measured with a humidification system. We demonstrate that good agreement (~10%) between the observed and calculated scattering can be obtained under ambient conditions (RH < 80%) by applying chemical composition data for the RI-based correction of the OPC-derived size spectra. We also demonstrate that ignoring the RI-based correction or using non-representative RI values can cause a substantial underestimation (~40%) or overestimation (~35%) of the calculated scattering, respectively

    Applications of Lagrangian Dispersion Modeling to the Analysis of Changes in the Specific Absorption of Elemental Carbon

    Get PDF
    We use a Lagrangian dispersion model driven by a mesoscale model with four-dimensional data assimilation to simulate the dispersion of elemental carbon (EC) over a region encompassing Mexico City and its surroundings, the study domain for the 2006 MAX-MEX experiment, which was a component of the MILAGRO campaign. The results are used to identify periods when biomass burning was likely to have had a significant impact on the concentrations of elemental carbon at two sites, T1 and T2, downwind of the city, and when emissions from the Mexico City Metropolitan Area (MCMA) were likely to have been more important. They are also used to estimate the median ages of EC affecting the specific absorption of light, aABS, at 870 nm as well as to identify periods when the urban plume from the MCMA was likely to have been advected over T1 and T2. Values of aABS at T1, the nearer of the two sites to Mexico City, were smaller at night and increased rapidly after mid-morning, peaking in the mid-afternoon. The behavior is attributed to the coating of aerosols with substances such as sulfate or organic carbon during daylight hours, but such coating appears to be limited or absent at night. Evidence for this is provided by scanning electron microscope images of aerosols collected at three sampling sites. During daylight hours the values of aABS did not increase with aerosol age for median ages in the range of 1-4 hours. There is some evidence for absorption increasing as aerosols were advected from T1 to T2 but the statistical significance of that result is not strong
    corecore