21 research outputs found

    Molecular epidemiology of residual Plasmodium vivax transmission in a paediatric cohort in Solomon Islands

    Get PDF
    Background: Following the scale-up of intervention efforts, malaria burden has decreased dramatically in Solomon Islands (SI). Submicroscopic and asymptomatic Plasmodium vivax infections are now the major challenge for malaria elimination in this country. Since children have higher risk of contracting malaria, this study investigated the dynamics of Plasmodium spp. infections among children including the associated risk factors of residual P. vivax burden. Methods: An observational cohort study was conducted among 860 children aged 0.5–12 years in Ngella (Central Islands Province, SI). Children were monitored by active and passive surveillances for Plasmodium spp. infections and illness. Parasites were detected by quantitative real-time PCR (qPCR) and genotyped. Comprehensive statistical analyses of P. vivax infection prevalence, molecular force of blood stage infection (molFOB) and infection density were conducted. Results: Plasmodium vivax infections were common (overall prevalence: 11.9%), whereas Plasmodium falciparum infections were rare (0.3%) but persistent. Although children acquire an average of 1.1 genetically distinct P. vivax blood-stage infections per year, there was significant geographic heterogeneity in the risks of P. vivax infections across Ngella (prevalence: 1.2–47.4%, p < 0.01; molFOB: 0.05–4.6/year, p < 0.01). Malaria incidence was low (IR: 0.05 episodes/year-at-risk). Age and measures of high exposure were the key risk factors for P. vivax infections and disease. Malaria incidence and infection density decreased with age, indicating significant acquisition of immunity. G6PD deficient children (10.8%) that did not receive primaquine treatment had a significantly higher prevalence (aOR: 1.77, p = 0.01) and increased risk of acquiring new bloodstage infections (molFOB aIRR: 1.51, p = 0.03), underscoring the importance of anti-relapse treatment. Conclusion: Residual malaria transmission in Ngella exhibits strong heterogeneity and is characterized by a high proportion of submicroscopic and asymptomatic P. vivax infections, alongside sporadic P. falciparum infections. Implementing an appropriate primaquine treatment policy to prevent P. vivax relapses and specific targeting of control interventions to high risk areas will be required to accelerate ongoing control and elimination activities

    Emergence of methicillin resistance predates the clinical use of antibiotics

    Get PDF
    The discovery of antibiotics more than 80 years ago has led to considerable improvements in human and animal health. Although antibiotic resistance in environmental bacteria is ancient, resistance in human pathogens is thought to be a modern phenomenon that is driven by the clinical use of antibiotics(1). Here we show that particular lineages of methicillin-resistant Staphylococcus aureus-a notorious human pathogen-appeared in European hedgehogs in the pre-antibiotic era. Subsequently, these lineages spread within the local hedgehog populations and between hedgehogs and secondary hosts, including livestock and humans. We also demonstrate that the hedgehog dermatophyte Trichophyton erinacei produces two beta-lactam antibiotics that provide a natural selective environment in which methicillin-resistant S. aureus isolates have an advantage over susceptible isolates. Together, these results suggest that methicillin resistance emerged in the pre-antibiotic era as a co-evolutionary adaptation of S. aureus to the colonization of dermatophyte-infected hedgehogs. The evolution of clinically relevant antibiotic-resistance genes in wild animals and the connectivity of natural, agricultural and human ecosystems demonstrate that the use of a One Health approach is critical for our understanding and management of antibiotic resistance, which is one of the biggest threats to global health, food security and development

    Epidemiologie moléculaire et résistance de Plasmodium vivax aux antipaludiques à Madagascar

    No full text
    Our objective was to assess (i) the importance of Plasmodium vivax infections in Madagascar, (ii) the parasite sensitivity to antimalarial drugs, and (iii) molecular markers role to monitor antimalarial drug resistance.The study was led on 8 sentinel sites. An in vivo protocol was conducted according to WHO criteria. P. vivax isolates were analysed for nucleotidic polymorphisms on pvcrt-o, pvmdr1, pvdhfr and pvdhps genes. We searched fro polymorphisms on pvcsp, pvmsp3, pvmsp1 genes and on microsatellites sequences to genotype the isolates from the in vivo protocol. Microsatellites markers were also used to assess the genetic diversity of the Malagasy isolates. Other microsatellites sequences located in the flanking regions of dhfr and dhps genes were identified to assess the origin and propagation of resistant clones.Notre objectif a été d'évaluer (i) l'importance de Plasmodium vivax dans les infections palustres à Madagascar, (ii) la sensibilité de ce parasite à la chloroquine et à la sulfadoxinepyriméthamine, (iii) et la place des marqueurs moléculaires pour la surveillance de la résistance aux antipaludiques et de la circulation des souches parasitaires.Pour cela, notre étude a été conduite sur 8 sites sentinelles. Les patients présentant un paludisme causé par P. vivax ont été inclus dans des tests d'efficacité thérapeutique selon les critères de l'OMS. L'analyse de polymorphismes génétiques sur les gènes pvcrt-o, pvmdr1, pvdhfr et pvdhps, impliqués dans la résistance aux antipaludiques, ainsi que sur les gènes pvcsp, pvmsp3, pvmsp1 utilisés pour le génotypage des souches a été réalisée sur les isolatscollectés. Des marqueurs microsatellites ont également été recherchés pour évaluer la diversité génétique de ces isolats, ainsi que la circulation des souches parasitaires et la propagation des isolats résistants

    Uncovering the transmission dynamics of Plasmodium vivax using population genetics

    Full text link
    Population genetic analysis of malaria parasites has the power to reveal key insights into malaria epidemiology and transmission dynamics with the potential to deliver tools to support control and elimination efforts. Analyses of parasite genetic diversity have suggested that Plasmodium vivax populations are more genetically diverse and less structured than those of Plasmodium falciparum indicating that P. vivax may be a more ancient parasite of humans and/or less susceptible to population bottlenecks, as well as more efficient at disseminating its genes. These population genetic insights into P. vivax transmission dynamics provide an explanation for its relative resilience to control efforts. Here, we describe current knowledge on P. vivax population genetic structure, its relevance to understanding transmission patterns and relapse and how this information can inform malaria control and elimination programmes

    High genetic diversity of Plasmodium vivax on the North Coast of Papua New Guinea

    No full text
    Abstract. Despite having the highest Plasmodium vivax burden in the world, molecular epidemiological data from Papua New Guinea (PNG) for this parasite remain limited. To investigate the molecular epidemiology of P. vivax in PNG, 574 isolates collected from four catchment sites in East Sepik (N = 1) and Madang (N = 3) Provinces were genotyped using the markers MS16 and msp1F3. Genetic diversity and prevalence of P. vivax was determined for all sites. Despite a P. vivax infection prevalence in the East Sepik (15%) catchments less than one-half the prevalence of the Madang catchments (27-35%), genetic diversity was similarly high in all populations (He = 0.77-0.98). High genetic diversity, despite a marked difference in infection prevalence, suggests a large reservoir of diversity in P. vivax populations of PNG. Significant reductions in transmission intensity may, therefore, be required to reduce the diversity of parasite populations in highly endemic countries such as PNG

    Characterization of Treatment Failure in Efficacy Trials of Drugs against Plasmodium vivax by Genotyping Neutral and Drug Resistance-Associated Markersâ–ż

    No full text
    Plasmodium vivax intervention trials customarily report uncorrected treatment failure rates. Application of recrudescence-reinfection genotyping and drug resistance single-nucleotide polymorphism typing to a 4-arm comparative efficacy trial illustrated that molecular approaches can assist in understanding the relative contributions of true drug resistance (recurrent with same genotype) and new infections to treatment failure. The PCR-corrected adequate clinical and parasitologic response may constitute an informative secondary endpoint in future P. vivax drug trials

    Nationwide genetic surveillance of Plasmodium vivax in Papua New Guinea reveals heterogeneous transmission dynamics and routes of migration amongst subdivided populations

    Full text link
    The Asia Pacific Leaders in Malaria Alliance (APLMA) have committed to eliminate malaria from the region by 2030. Papua New Guinea (PNG) has the highest malaria burden in the Asia-Pacific region but with the intensification of control efforts since 2005, transmission has been dramatically reduced and Plasmodium vivax is now the dominant malaria infection in some parts of the country. To gain a better understanding of the transmission dynamics and migration patterns of P. vivax in PNG, here we investigate population structure in eight geographically and ecologically distinct regions of the country. A total of 219 P. vivax isolates (16-30 per population) were successfully haplotyped using 10 microsatellite markers. A wide range of genetic diversity (He=0.37-0.87, Rs=3.60-7.58) and significant multilocus linkage disequilibrium (LD) was observed in six of the eight populations (IAS=0.08-0.15 p-value&lt;0.05) reflecting a spectrum of transmission intensities across the country. Genetic differentiation between regions was evident (Jost's D=0.07-0.72), with increasing divergence of populations with geographic distance. Overall, P. vivax isolates clustered into three major genetic populations subdividing the Mainland lowland and coastal regions, the Islands and the Highlands. P. vivax gene flow follows major human migration routes, and there was higher gene flow amongst Mainland parasite populations than among Island populations. The Central Province (samples collected in villages close to the capital city, Port Moresby), acts as a sink for imported infections from the three major endemic areas. These insights into P. vivax transmission dynamics and population networks will inform targeted strategies to contain malaria infections and to prevent the spread of drug resistance in PNG
    corecore