3,783 research outputs found

    Land deed, Marshall County, MS, 6 February 1856

    Get PDF
    https://egrove.olemiss.edu/aldrichcorr_c/1104/thumbnail.jp

    Volume 32 (2021)

    Get PDF

    Variables in the Southern Polar Region Evryscope 2016 Dataset

    Get PDF
    The regions around the celestial poles offer the ability to find and characterize long-term variables from ground-based observatories. We used multi-year Evryscope data to search for high-amplitude (~5% or greater) variable objects among 160,000 bright stars (Mv < 14.5) near the South Celestial Pole. We developed a machine learning based spectral classifier to identify eclipse and transit candidates with M-dwarf or K-dwarf host stars - and potential low-mass secondary stars or gas giant planets. The large amplitude transit signals from low-mass companions of smaller dwarf host stars lessens the photometric precision and systematics removal requirements necessary for detection, and increases the discoveries from long-term observations with modest light curve precision. The Evryscope is a robotic telescope array that observes the Southern sky continuously at 2-minute cadence, searching for stellar variability, transients, transits around exotic stars and other observationally challenging astrophysical variables. In this study, covering all stars 9 < Mv < 14.5, in declinations -75 to -90 deg, we recover 346 known variables and discover 303 new variables, including 168 eclipsing binaries. We characterize the discoveries and provide the amplitudes, periods, and variability type. A 1.7 Jupiter radius planet candidate with a late K-dwarf primary was found and the transit signal was verified with the PROMPT telescope network. Further followup revealed this object to be a likely grazing eclipsing binary system with nearly identical primary and secondary K5 stars. Radial velocity measurements from the Goodman Spectrograph on the 4.1 meter SOAR telescope of the likely-lowest-mass targets reveal that six of the eclipsing binary discoveries are low-mass (.06 - .37 solar mass) secondaries with K-dwarf primaries, strong candidates for precision mass-radius measurements.Comment: 32 pages, 17 figures, accepted to PAS

    PCN153 A Trial for Evaluating Breast Cancer Tumor Marker Use Impact: A Value of Research Analysis

    Get PDF

    The Solar Neighborhood. XXXIX. Parallax Results from the CTIOPI and NOFS Programs: 50 New Members of the 25 Parsec White Dwarf Sample

    Get PDF
    We present 114 trigonometric parallaxes for 107 nearby white dwarf (WD) systems from both the Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI) and the U. S. Naval Observatory Flagstaff Station (NOFS) parallax programs. Of these, 76 parallaxes for 69 systems were measured by the CTIOPI program and 38 parallaxes for as many systems were measured by the NOFS program. A total of 50 systems are confirmed to be within the 25 pc horizon of interest. Coupled with a spectroscopic confirmation of a common proper motion companion to a Hipparcos star within 25 pc as well as confirmation parallax determinations for two WD systems included in the recently released Tycho Gaia Astrometric Solution (TGAS) catalog, we add 53 new systems to the 25 pc WD sample −- a 42% increase. Our sample presented here includes four strong candidate halo systems, a new metal-rich DAZ WD, a confirmation of a recently discovered nearby short-period (P = 2.85 hr) double degenerate, a WD with a new astrometric pertubation (long period, unconstrained with our data), and a new triple system where the WD companion main-sequence star has an astrometric perturbation (P ∌\sim 1.6 yr).Comment: 32 pages, 12 figures. Figure 4 in the manuscript is a representative set of plots - plots for all WDs presented here are available (allfits_photo.pdf, allfits_photo_DQ.pdf, and allfits_photo_DZ.pdf). Accepted for publication in The Astronomical Journa

    EVR-CB-001: An evolving, progenitor, white dwarf compact binary discovered with the Evryscope

    Get PDF
    We present EVR-CB-001, the discovery of a compact binary with an extremely low mass (.21±0.05M⊙.21 \pm 0.05 M_{\odot}) helium core white dwarf progenitor (pre-He WD) and an unseen low mass (.32±0.06M⊙.32 \pm 0.06 M_{\odot}) helium white dwarf (He WD) companion. He WDs are thought to evolve from the remnant helium-rich core of a main-sequence star stripped during the giant phase by a close companion. Low mass He WDs are exotic objects (only about .2%\% of WDs are thought to be less than .3 M⊙M_{\odot}), and are expected to be found in compact binaries. Pre-He WDs are even rarer, and occupy the intermediate phase after the core is stripped, but before the star becomes a fully degenerate WD and with a larger radius (≈.2R⊙\approx .2 R_{\odot}) than a typical WD. The primary component of EVR-CB-001 (the pre-He WD) was originally thought to be a hot subdwarf (sdB) star from its blue color and under-luminous magnitude, characteristic of sdBs. The mass, temperature (Teff=18,500±500KT_{\rm eff}=18,500 \pm 500 K), and surface gravity (log⁥(g)=4.96±0.04\log(g)=4.96 \pm 0.04) solutions from this work are lower than values for typical hot subdwarfs. The primary is likely to be a post-RGB, pre-He WD contracting into a He WD, and at a stage that places it nearest to sdBs on color-magnitude and TeffT_{\rm eff}-log⁥(g)\log(g) diagrams. EVR-CB-001 is expected to evolve into a fully double degenerate, compact system that should spin down and potentially evolve into a single hot subdwarf star. Single hot subdwarfs are observed, but progenitor systems have been elusive.Comment: 14 pages, 11 figures. Published in The Astrophysical Journa

    Variables in the Southern Polar Region Evryscope 2016 Data Set

    Full text link
    The regions around the celestial poles offer the ability to find and characterize long-term variables from ground-based observatories. We used multi-year Evryscope data to search for high-amplitude (≈5% or greater) variable objects among 160,000 bright stars (mv σ limiting magnitude of g = 16 in dark time. In this study, covering all stars 9 M⊙) secondaries with K-dwarf primaries, strong candidates for precision mass–radius measurements

    Elemental abundances of Galactic bulge planetary nebulae from optical recombination lines

    Full text link
    (abridged) Deep long-slit optical spectrophotometric observations are presented for 25 Galactic bulge planetary nebulae (GBPNe) and 6 Galactic disk planetary nebulae (GDPNe). The spectra, combined with archival ultraviolet spectra obtained with the International Ultraviolet Explorer (IUE) and infrared spectra obtained with the Infrared Space Observatory (ISO), have been used to carry out a detailed plasma diagnostic and element abundance analysis utilizing both collisional excited lines (CELs) and optical recombination lines (ORLs). Comparisons of plasma diagnostic and abundance analysis results obtained from CELs and from ORLs reproduce many of the patterns previously found for GDPNe. In particular we show that the large discrepancies between electron temperatures (Te's) derived from CELs and from ORLs appear to be mainly caused by abnormally low values yielded by recombination lines and/or continua. Similarly, the large discrepancies between heavy element abundances deduced from ORLs and from CELs are largely caused by abnormally high values obtained from ORLs, up to tens of solar in extreme cases. It appears that whatever mechanisms are causing the ubiquitous dichotomy between CELs and ORLs, their main effects are to enhance the emission of ORLs, but hardly affect that of CELs. It seems that heavy element abundances deduced from ORLs may not reflect the bulk composition of the nebula. Rather, our analysis suggests that ORLs of heavy element ions mainly originate from a previously unseen component of plasma of Te's of just a few hundred Kelvin, which is too cool to excite any optical and UV CELs.Comment: 35 pages, 27 figures and 16 tables, accepted for publication in MNRA
    • 

    corecore