88 research outputs found

    The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease detection

    Full text link
    Machine Learning (ML) has emerged as a promising approach in healthcare, outperforming traditional statistical techniques. However, to establish ML as a reliable tool in clinical practice, adherence to best practices regarding data handling, experimental design, and model evaluation is crucial. This work summarizes and strictly observes such practices to ensure reproducible and reliable ML. Specifically, we focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare. We investigate the impact of different data augmentation techniques and model complexity on the overall performance. We consider MRI data from ADNI dataset to address a classification problem employing 3D Convolutional Neural Network (CNN). The experiments are designed to compensate for data scarcity and initial random parameters by utilizing cross-validation and multiple training trials. Within this framework, we train 15 predictive models, considering three different data augmentation strategies and five distinct 3D CNN architectures, each varying in the number of convolutional layers. Specifically, the augmentation strategies are based on affine transformations, such as zoom, shift, and rotation, applied concurrently or separately. The combined effect of data augmentation and model complexity leads to a variation in prediction performance up to 10% of accuracy. When affine transformation are applied separately, the model is more accurate, independently from the adopted architecture. For all strategies, the model accuracy followed a concave behavior at increasing number of convolutional layers, peaking at an intermediate value of layers. The best model (8 CL, (B)) is the most stable across cross-validation folds and training trials, reaching excellent performance both on the testing set and on an external test set

    Hey there's DALILA: a DictionAry LearnIng LibrAry

    Get PDF
    Dictionary Learning and Representation Learning are machine learning methods for decomposition, denoising and reconstruction of data with a wide range of applications such as text recognition, image processing and biological processes understanding. In this work we present DALILA, a scientific Python library for regularised dictionary learning and regularised representation learning that allows to impose prior knowledge, if available. DALILA, differently from the others available libraries for this purpose, is flexible and modular. DALILA is designed to be easily extended for custom needs. Moreover, it is compliant with the most widespread ML Python library and this allows for a straightforward usage and integration. We here present and discuss the theoretical aspects and discuss its strength points and implementation

    Multi-Output Learning via Spectral Filtering

    Get PDF
    In this paper we study a class of regularized kernel methods for vector-valued learning which are based on filtering the spectrum of the kernel matrix. The considered methods include Tikhonov regularization as a special case, as well as interesting alternatives such as vector-valued extensions of L2 boosting. Computational properties are discussed for various examples of kernels for vector-valued functions and the benefits of iterative techniques are illustrated. Generalizing previous results for the scalar case, we show finite sample bounds for the excess risk of the obtained estimator and, in turn, these results allow to prove consistency both for regression and multi-category classification. Finally, we present some promising results of the proposed algorithms on artificial and real data

    Predicting diabetes second-line therapy initiation in the Australian population via time span-guided neural attention network

    Get PDF
    Introduction The first line of treatment for people with Diabetes mellitus is metformin. However, over the course of the disease metformin may fail to achieve appropriate glycemic control, and a second-line therapy may become necessary. In this paper we introduce Tangle, a time span-guided neural attention model that can accurately and timely predict the upcoming need for a second-line diabetes therapy from administrative data in the Australian adult population. The method is suitable for designing automatic therapy review recommendations for patients and their providers without the need to collect clinical measures. Data We analyzed seven years of de-identified records (2008-2014) of the 10% publicly available linked sample of Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme (PBS) electronic databases of Australia. Methods By design, Tangle inherits the representational power of pre-trained word embedding, such as GloVe, to encode sequences of claims with the related MBS codes. Moreover, the proposed attention mechanism natively exploits the information hidden in the time span between two successive claims (measured in number of days). We compared the proposed method against state-of-the-art sequence classification methods. Results Tangle outperforms state-of-the-art recurrent neural networks, including attention-based models. In particular, when the proposed time span-guided attention strategy is coupled with pre-trained embedding methods, the model performance reaches an Area Under the ROC Curve of 90%, an improvement of almost 10 percentage points over an attentionless recurrent architecture. Implementation Tangle is implemented in Python using Keras and it is hosted on GitHub at https://github. com/samuelefiorini/tangle

    Temporal prediction of multiple sclerosis evolution from patient-centered outcomes

    Get PDF
    Multiple Sclerosis is a degenerative condition of the central nervous system that affects nearly 2.5 million of individuals in terms of their physical, cognitive, psychological and social capabilities. Despite the high variability of its clinical presentation, relapsing and progressive multiple sclerosis are considered the two main disease types, with the former possibly evolving into the latter. Recently, the attention of the medical community toward the use of patient-centered outcomes in multiple sclerosis has significantly increased. Such patient-friendly measures are devoted to the assessment of the impact of the disease on several domains of the patient life. In this work, we investigate on use of patient-centered outcomes to predict the evolution of the disease and to assess its impact on patients\u201a\uc4\uf4 lives. To this aim, we build a novel temporal model based on gradient boosting classification and multiple-output elastic-net regression. The model provides clinically interpretable results along with accurate predictions of the disease course evolution

    An overview of data integration in neuroscience with focus on Alzheimer's Disease

    Get PDF
    : This work represents the first attempt to provide an overview of how to face data integration as the result of a dialogue between neuroscientists and computer scientists. Indeed, data integration is fundamental for studying complex multifactorial diseases, such as the neurodegenerative diseases. This work aims at warning the readers of common pitfalls and critical issues in both medical and data science fields. In this context, we define a road map for data scientists when they first approach the issue of data integration in the biomedical domain, highlighting the challenges that inevitably emerge when dealing with heterogeneous, large-scale and noisy data and proposing possible solutions. Here, we discuss data collection and statistical analysis usually seen as parallel and independent processes, as cross-disciplinary activities. Finally, we provide an exemplary application of data integration to address Alzheimer's Disease (AD), which is the most common multifactorial form of dementia worldwide. We critically discuss the largest and most widely used datasets in AD, and demonstrate how the emergence of machine learning and deep learning methods has had a significant impact on disease's knowledge particularly in the perspective of an early AD diagnosis

    AI-based component management system for structured content creation, annotation, and publication

    Get PDF
    Nowadays, the ever changing and growing amount of information, regulations, and data requires large organizations to describe on the web increasingly complex and interdependent business processes and services, ideally creating user-profiled content that is clear and up to date. To successfully achieve this goal, as off-the-shelf solutions are missing, institutions have to embark in a digital transformation process fully endorsed by governance, led by a multidisciplinary team of experts, and strongly integrated with artificial intelligence (AI) tools. In this paper we describe how a content service platform, that integrates human processes and state-of-the-art AI services, was successfully employed in our institution (UniGe) to manage, and support a system of about 200 websites. Following a single-sourcing paradigm, its advent allowed for the decoupling of content and technology, preparing UniGe for the future needs of the semantic web

    Multi-task multiple kernel learning reveals relevant frequency bands for critical areas localization in focal epilepsy

    Get PDF
    The localization of epileptic zone in pharmacoresistant focal epileptic patients is a daunting task, typically performed by medical experts through visual inspection over highly sampled neural recordings. For a finer localization of the epileptogenic areas and a deeper understanding of the pathology both the identification of pathogenical biomarkers and the automatic characterization of epileptic signals are desirable. In this work we present a data integration learning method based on multi-level representation of stereo-electroencephalography recordings and multiple kernel learning. To the best of our knowledge, this is the first attempt to tackle both aspects simultaneously, as our approach is devised to classify critical vs. non-critical recordings while detecting the most discriminative frequency bands. The learning pipeline is applied to a data set of 18 patients for a total of 2347 neural recordings analyzed by medical experts. Without any prior knowledge assumption, the data-driven method reveals the most discriminative frequency bands for the localization of epileptic areas in the high-frequency spectrum (>=80 Hz) while showing high performance metric scores (mean balanced accuracy of 0.89 +- 0.03). The promising results may represent a starting point for the automatic search of clinical biomarkers of epileptogenicity
    corecore