484 research outputs found

    Reconciling place attachment with catchment-based flood risk management:What can we learn from film?

    Get PDF
    A catchment-based approach to flood risk management (FRM) is gaining prominence in the United Kingdom. It is undertaken with wider awareness of multiple stakeholders, as part of a catchment scale understanding, and, as with other approaches, can visually re-shape place. Land cover and land management change at this scale also has the potential to reconfigure landscape values and place attachment. Researchers have used qualitative, quantitative, and mapping approaches to understand place attachment. Here we explore secondary data, specifically, we transcribe and code the stories of five Mytholmroyd, West Yorkshire residents from the short film, Calder about the December 26, 2015 floods. We find place attachment, identity, and social capital are interconnected and feature strongly in the mitigation and prevention phase, post-disaster. Our findings suggest better understanding of place attachment can support a more catchment scale approach to FRM policy and practice

    Signature inversion in semi-decoupled bands: Residual interaction between h9/2 protons and i13/2 neutrons

    Get PDF
    Semi-decoupled bands based on the πh9/2 ⊗ vi13/2 configuration are observed in 162Tm,164Tm and 174Ta. Spins assigned to these bands imply an inversion of the expected signature splitting, which is interpreted as being the result of a residual proton-neutron interactionComisión Interministerial de Ciencia y Tecnología PB95-0533US Dept. of Energy DE-FGOS- 92ER4069

    Regional and developmental brain expression patterns of SNAP25 splice variants

    Get PDF
    SNAP25 is an essential SNARE protein for regulated exocytosis in neuronal cells. Differential splicing of the SNAP25 gene results in the expression of two transcripts, SNAP25a and SNAP25b. These splice variants differ by only 9 amino acids, and studies of their expression to date have been limited to analysis of the corresponding mRNAs. Although these studies have been highly informative, it is possible that factors such as differential turnover of the SNAP25 proteins could complicate interpretations based entirely on mRNA expression profiles

    Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and cerine residues in the Epstein-Barr Virus lytic switch protein

    Get PDF
    Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with various malignancies, including Burkitt's lymphoma and nasopharyngeal carcinoma. Like all herpesviruses, the EBV life cycle alternates between latency and lytic replication. During latency, the viral genome is largely silenced by host-driven methylation of CpG motifs and, in the switch to the lytic cycle, this epigenetic silencing is overturned. A key event is the activation of the viral BRLF1 gene by the immediate-early protein Zta. Zta is a bZIP transcription factor that preferentially binds to specific response elements (ZREs) in the BRLF1 promoter (Rp) when these elements are methylated. Zta's ability to trigger lytic cycle activation is severely compromised when a cysteine residue in its bZIP domain is mutated to serine (C189S), but the molecular basis for this effect is unknown. Here we show that the C189S mutant is defective for activating Rp in a Burkitt's lymphoma cell line. The mutant is compromised both in vitro and in vivo for binding two methylated ZREs in Rp (ZRE2 and ZRE3), although the effect is striking only for ZRE3. Molecular modeling of Zta bound to methylated ZRE3, together with biochemical data, indicate that C189 directly contacts one of the two methyl cytosines within a specific CpG motif. The motif's second methyl cytosine (on the complementary DNA strand) is predicted to contact S186, a residue known to regulate methyl-ZRE recognition. Our results suggest that C189 regulates the enhanced interaction of Zta with methylated DNA in overturning the epigenetic control of viral latency. As C189 is conserved in many bZIP proteins, the selectivity of Zta for methylated DNA may be a paradigm for a more general phenomenon

    Robust global sensitivity analysis of a river management model to assess nonlinear and interaction effects

    Get PDF
    The simulation of routing and distribution of water through a regulated river system with a river management model will quickly result in complex and nonlinear model behaviour. A robust sensitivity analysis increases the transparency of the model and provides both the modeller and the system manager with a better understanding and insight on how the model simulates reality and management operations. In this study, a robust, density-based sensitivity analysis, developed by Plischke et al. (2013), is applied to an eWater Source river management model. This sensitivity analysis methodology is extended to not only account for main effects but also for interaction effects. The combination of sensitivity indices and scatter plots enables the identification of major linear effects as well as subtle minor and nonlinear effects. The case study is an idealized river management model representing typical conditions of the southern Murray-Darling Basin in Australia for which the sensitivity of a variety of model outcomes to variations in the driving forces, inflow to the system, rainfall and potential evapotranspiration, is examined. The model outcomes are most sensitive to the inflow to the system, but the sensitivity analysis identified minor effects of potential evapotranspiration and nonlinear interaction effects between inflow and potential evapotranspiration

    Rewritable nanoscale oxide photodetector

    Full text link
    Nanophotonic devices seek to generate, guide, and/or detect light using structures whose nanoscale dimensions are closely tied to their functionality. Semiconducting nanowires, grown with tailored optoelectronic properties, have been successfully placed into devices for a variety of applications. However, the integration of photonic nanostructures with electronic circuitry has always been one of the most challenging aspects of device development. Here we report the development of rewritable nanoscale photodetectors created at the interface between LaAlO3 and SrTiO3. Nanowire junctions with characteristic dimensions 2-3 nm are created using a reversible AFM writing technique. These nanoscale devices exhibit a remarkably high gain for their size, in part because of the large electric fields produced in the gap region. The photoconductive response is gate-tunable and spans the visible-to-near-infrared regime. The ability to integrate rewritable nanoscale photodetectors with nanowires and transistors in a single materials platform foreshadows new families of integrated optoelectronic devices and applications.Comment: 5 pages, 5 figures. Supplementary Information 7 pages, 9 figure

    Risk management frameworks:Supporting the next generation of Murray-Darling Basin water sharing plans

    Get PDF
    Water jurisdictions in Australia are required to prepare and implement water resource plans. In developing these plans the common goal is realising the best possible use of the water resources-maximising outcomes while minimising negative impacts. This requires managing the risks associated with assessing and balancing cultural, industrial, agricultural, social and environmental demands for water within a competitive and resource-limited environment. Recognising this, conformance to international risk management principles (ISO 31000:2009) have been embedded within the Murray-Darling Basin Plan. Yet, to date, there has been little strategic investment by water jurisdictions in bridging the gap between principle and practice. The ISO 31000 principles and the risk management framework that embodies them align well with an adaptive management paradigm within which to conduct water resource planning. They also provide an integrative framework for the development of workflows that link risk analysis with risk evaluation and mitigation (adaptation) scenarios, providing a transparent, repeatable and robust platform. This study, through a demonstration use case and a series of workflows, demonstrates to policy makers how these principles can be used to support the development of the next generation of water sharing plans in 2019. The workflows consider the uncertainty associated with climate and flow inputs, and model parameters on irrigation and hydropower production, meeting environmental flow objectives and recreational use of the water resource. The results provide insights to the risks associated with meeting a range of different objectives

    Electronic reconstruction at the polar (111)- oriented oxide interface

    Get PDF
    Atomically flat (111) interfaces between insulating perovskite oxides provide a landscape for new electronic phenomena. For example, the graphene-like coordination between interfacial metallic ion layer pairs can lead to topologically protected states [Xiao et al., Nat. Commun. 2, 596 (2011) and A. Rüegg and G. A. Fiete, Phys. Rev. B 84, 201103 (2011)]. The metallic ion/metal oxide bilayers that comprise the unit cell of the perovskite (111) heterostructures require the interface to be polar, generating an intrinsic polar discontinuity [Chakhalian et al., Nat. Mater. 11, 92 (2012)]. Here, we investigate epitaxial heterostructures of (111)-oriented LaAlO3/SrTiO3 (LAO/STO). We find that during heterostructure growth, the LAO overlayer eliminates the structural reconstruction of the STO (111) surface with an electronic reconstruction, which determines the properties of the resulting two-dimensional conducting gas. This is confirmed by transport measurements, direct determination of the structure and atomic charge from coherent Bragg rod analysis, and theoretical calculations of electronic and structural characteristics. Interfacial behaviors of the kind discussed here may lead to new growth control parameters useful for electronic devices

    An Ancient Duplication of Exon 5 in the Snap25 Gene Is Required for Complex Neuronal Development/Function

    Get PDF
    Alternative splicing is an evolutionary innovation to create functionally diverse proteins from a limited number of genes. SNAP-25 plays a central role in neuroexocytosis by bridging synaptic vesicles to the plasma membrane during regulated exocytosis. The SNAP-25 polypeptide is encoded by a single copy gene, but in higher vertebrates a duplication of exon 5 has resulted in two mutually exclusive splice variants, SNAP-25a and SNAP-25b. To address a potential physiological difference between the two SNAP-25 proteins, we generated gene targeted SNAP-25b deficient mouse mutants by replacing the SNAP-25b specific exon with a second SNAP-25a equivalent. Elimination of SNAP-25b expression resulted in developmental defects, spontaneous seizures, and impaired short-term synaptic plasticity. In adult mutants, morphological changes in hippocampus and drastically altered neuropeptide expression were accompanied by severe impairment of spatial learning. We conclude that the ancient exon duplication in the Snap25 gene provides additional SNAP-25-function required for complex neuronal processes in higher eukaryotes
    corecore