40 research outputs found

    Macroscopic coherence of a single exciton state in a polydiacetylene organic quantum wire

    Full text link
    We show that a single exciton state in an individual ordered conjugated polymer chain exhibits macroscopic quantum spatial coherence reaching tens of microns, limited by the chain length. The spatial coherence of the k=0 exciton state is demonstrated by selecting two spatially separated emitting regions of the chain and observing their interference.Comment: 12 pages with 2 figure

    Double-crowned 2D semiconductor nanoplatelets with bicolor power-tunable emission

    Get PDF
    Nanocrystals (NCs) are now established building blocks for optoelectronics and their use as down converters for large gamut displays has been their first mass market. NC integration relies on a combination of green and red NCs into a blend, which rises post-growth formulation issues. A careful engineering of the NCs may enable dual emissions from a single NC population which violates Kasha’s rule, which stipulates that emission should occur at the band edge. Thus, in addition to an attentive control of band alignment to obtain green and red signals, non-radiative decay paths also have to be carefully slowed down to enable emission away from the ground state. Here, we demonstrate that core/crown/crown 2D nanoplatelets (NPLs), made of CdSe/CdTe/CdSe, can combine a large volume and a type-II band alignment enabling simultaneously red and narrow green emissions. Moreover, we demonstrate that the ratio of the two emissions can be tuned by the incident power, which results in a saturation of the red emission due to non-radiative Auger recombination that affects this emission much stronger than the green one. Finally, we also show that dual-color, power tunable, emission can be obtained through an electrical excitation

    Emission State Structure and Linewidth Broadening Mechanisms in Type-II CdSe/CdTe Core–Crown Nanoplatelets: A Combined Theoretical–Single Nanocrystal Optical Study

    Get PDF
    Type-II heterostructures are key elementary components in optoelectronic, photovoltaic, and quantum devices. The staggered band alignment of materials leads to the stabilization of indirect excitons (IXs), i.e., correlated electron–hole pairs experiencing spatial separation with novel properties, boosting optical gain and promoting strategies for the design of information storage, charge separation, or qubit manipulation devices. Planar colloidal CdSe/CdTe core–crown type-II nested structures, grown as nanoplatelets (NPLs), are the focus of the present work. By combining low temperature single NPL measurements and electronic structure calculations, we gain insights into the mechanisms impacting the emission properties. We are able to probe the sensitivity of the elementary excitations (IXs, trions) with respect to the appropriate structural parameter (core size). Neutral IXs, with binding energies reaching 50 meV, are shown to dominate the highly structured single NPL emission. The large broadening linewidth that persists at the single NPL level clearly results from strong exciton–LO phonon coupling (Eph = 21 meV) whose strength is poorly influenced by trapped charges. The spectral jumps (≈10 meV) in the photoluminescence recorded as a function of time are explained by the fluctuations in the IX electrostatic environment considering fractional variations (≈0.2 e) of the noncompensated charge defects

    Visible and Infrared Nanocrystal-Based Light Modulator with CMOS Compatible Bias Operation

    Get PDF
    Nanocrystals are now established light sources, and as synthesis and device integration have gained maturity, new functionalities can now be considered. So far, the emitted light from a nanocrystal population remains mostly driven by the structural properties (composition, size, and shape) of the particle, and only limited postsynthesis tunability has been demonstrated. Here, we explore the design of light amplitude modulators using a nanocrystal-based light-emitting diode operated under reverse bias. We demonstrate strong photoluminescence modulations for devices operating in the visible and near-telecom wavelengths using low bias operations (<3 V) compatible with conventional electronics. For a visible device based on 2D nanoplatelets, we demonstrate that the photoluminescence quenching is driven by the field-induced change of nonradiative decay rate and that the field is less involved than the particle charging. This work demonstrates that a simple diode stack can combine several functionalities (light-emitting diode, detector, and light modulator) simply by selecting the driving bias.The project is supported by ERC starting grant blackQD (Grant No. 756225) and Ne2Dem (Grant No. 853049). We acknowledge the use of clean-room facilities from the “Centrale de ProximitĂ© Paris-Centre”. This work has been supported by the Region Ile-de-France in the framework of DIM Nano-K (grant dopQD). This work is supported by French state funds managed by the ANR within the Investissements d’Avenir program under reference ANR-11-IDEX-0004-02, and more specifically within the framework of the Cluster of Excellence MATISSE and also by the grant IPER-Nano2 (ANR-18CE30-0023-01), Copin (ANR-19-CE24-0022), Frontal (ANR-19-CE09-0017), Graskop (ANR-19-CE09-0026), and NITQuantum (ANR-20-ASTR-0008–01), Bright (ANR-21-CE24–0012–02), MixDferro (ANR-21-CE09–0029) and QuickTera (ANR-22-CE09-0018). J.I.C. acknowledges support from UJI-B2021-06 and MICINN PID2021-128659NB-I00. H.Z. thanks China Scholarship Council for Ph.D. funding

    Optoelectronic properties of methyl-terminated germanane

    Get PDF
    Germanane is a two-dimensional, strongly confined form of germanium. It presents an interesting combination of (i) ease of integration with CMOS technology, (ii) low toxicity, and (iii) electronic confinement which transforms the indirect bandgap of the bulk material into a direct bandgap featuring photoluminescence. However, the optoelectronic properties of this material remain far less investigated than its structural properties. Here, we investigate the photoluminescence and transport properties of arrays of methyl-terminated germanane flakes. The photoluminescence appears to have two contributions, one from the band edge and the other from trap states. The dynamics of the exciton appear to be in the range of 1–100 ns. Conduction in this material appears to be p-type, while the photoconduction time response can be made as short as 100 ÎŒs

    Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors.

    Get PDF
    Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s-1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons.EPSRC (EP/R025517/1), EPSRC (EP/M025330/1), ERC Horizon 2020 (grant agreements No 670405 and No 758826), ERC (ERC-2014-STG H2020 639088), Netherlands Organisation for Scientific Research, Swedish Research Council (VR, 2014-06948), Knut and Alice Wallenberg Foundation 3DEM-NATUR (no. 2012.0112), Royal Commission for the Exhibition of 1851, CNRS (France), US Department of Energy, Office of Science, Basic Energy Sciences, CPIMS Program, Early Career Research Program (DE-SC0019188)
    corecore