9 research outputs found

    Generation of induced pluripotent stem cells (iPSCs) from patient with Cri du Chat Syndrome

    Get PDF
    Abstract The Cri du Chat Syndrome (CdCS) is a genetic disease resulting from variable size deletion occurring on the short arm of chromosome 5. The main clinical features are a high-pitched monochromatic cry, microcephaly, severe psychomotor and mental retardation with characteristics of autism spectrum disorders such as hand flapping, obsessive attachments to objects, twirling objects, repetitive movements, and rocking. We reprogrammed to pluripotency peripheral blood mononuclear cells derived from a patient carrying large deletion on the short arm of chromosome 5, using a commercially available non-integrating expression system. The iPSCs expressed pluripotency markers and differentiated in the three embryonic germ layers

    Generation of 3 clones of induced pluripotent stem cells (iPSCs) from a patient affected by Autosomal Recessive Osteopetrosis due to mutations in TCIRG1 gene.

    Get PDF
    Abstract Autosomal recessive osteopetrosis (ARO) is a rare inherited disorder leading to increased bone density with impairment in bone resorption. Among the genes responsible for ARO, the TCIRG1 gene, coding for the a3 subunit of the osteoclast proton pump, is mutated in more than 50% of the cases, increasing the importance of TCIRG1-iPSCs as disease model. We generated 3 iPSC clones derived from Peripheral Blood Mononuclear Cells (PBMCs) of a patient carrying the heterozygous mutations p.Y512X and c.2236+1G>A. A Sendai virus-based vector was used and the iPSCs were characterized for genetic identity to parental cells, genomic integrity, pluripotency, and differentiation ability

    Establishment of three iPSC lines from fibroblasts of a patient with Aicardi Goutières syndrome mutated in RNaseH2B.

    Get PDF
    Abstract We report the generation of three isogenic iPSC clones (UNIBSi007-A, UNIBSi007-B, and UNIBSi007-C) obtained from fibroblasts of a patient with Aicardi Goutieres Syndrome (AGS) carrying a homozygous mutation in RNaseH2B. Cells were transduced using a Sendai virus based system, delivering the human OCT4, SOX2, c-MYC and KLF4 transcription factors. The resulting transgene-free iPSC lines retained the disease-causing DNA mutation, showed normal karyotype, expressed pluripotent markers and could differentiate in vitro toward cells of the three embryonic germ layers

    An integrated route to identifying new pathogenesis-based therapeutic approaches for trisomy 21 (Down Syndrome) following the thought of Jérôme Lejeune

    No full text
    Down Syndrome (DS) is the most frequent human chromosomal disorder. Main symptoms include intellectual disability (ID), cardiovascular defects and craniofacial dysmorphisms. Despite ID being measured by a test of symbolic logic skills, it is common for children with DS to arouse a climate of affective intensity greater than the norm. In 1959, Jérôme Lejeune (1926-1994) and coll. described an additional chromosome 21 (Hsa21) in children with DS (trisomy 21), giving origin to the field of medical genetics. Remarkably, the discovery of trisomy 21 had relevant social consequences for the affected children, in that their parents were no longer suspected to be alcoholics or infected with syphilis. Although it is broadly agreed that the DS phenotype originates from the altered expression of the genes located on Hsa21, its molecular pathogenesis is still unknown. To date, no therapy is recognized and recommended by guidelines as being effective in improving the cognitive abilities of persons with DS. The aim of this article is to categorize main therapeutical approaches or pathways to new approaches reported in the biomedical literature, to extract critical methodological points from the works of Lejeune and then to propose a new research project aimed to generate and integrate clinical, biochemical, genetic and bioinformatic data in order to identify novel therapeutic targets for this form of trisomy. We show here that nearly all the current lines of research were pursued, theorized or foreseen by Lejeune, and that central points of his method remain current: positive hypothesis about the existence of a solution, envision of systematic investigation of cell machinery, anchoring of clinical and biochemical finding to the chromosome physical map, and continuing clinical observation of the affected children. We therefore propose a project aimed at producing both experimentally and by meta-analysis state-of-the-art maps and databases related to clinical/phenotype, cytogenetics, exome, transcriptome, methylome, molecular biology, metabolome and mutations data. The primary expected outcome of this research project is the identification of a restricted list of strong candidate genes and mechanisms for ID in persons with DS in order to devise new rational therapeutic approaches

    Biologia e Genetica

    No full text
    l testo è strutturato affinché lo studente possa facilmente conoscere, comprendere ed assimilare i concetti fondamentali della Biologia e della Genetica. Gli argomenti tecnico-scientifici sono illustrati con stile semplice, senza appesantimenti testuali o nozionistici, e sono esposti con metodo e rigore scientifico. In questa nuova edizione tutti i capitoli sono stati rivisti, revisionati e corretti per favorire una maggiore comprensione del testo. Alcuni argomenti dei capitoli eliminati sono stati aggiornati e collocati in maniera opportuna negli capitoli attualmente presenti. Il Capitolo 5, inserito ex novo in questa edizione, è dedicato alla genomica, alla trascrittomica e alla proteomica e analizza le novità delle attuali tematiche di maggior rilievo scientifico. Nel Capitolo 11 è stata arricchita ed ampliata la Genetica di popolazione. I contenuti descritti sono corredati da una iconografia che aiuta e guida all'apprendimento anche di argomenti complessi. Nuovi Inserti, che forniscono approfondimenti agli argomenti trattati, si aggiungono agli Inserti rivisti ed aggiornati. Il Capitolo 12, dedicato alle metodologie in campo genomico e post-genomico, è presente online nell'area riservata. 1 Basi chimiche e organizzazione molecolare della “vita” 2 Basi dell’organizzazione biologica 3 Mitocondri e trasformazione energetica 4 Flusso dell’informazione 5 Genomica, trascrittomica e proteomica 6 Funzione cellulare e traffico intracellulare 7 Riproduzione e ciclo cellulare 8 Riproduzione degli organismi 9 Mutazioni: tipi, origini, conseguenze 10 Genetica generale 11 Genetica umana 12 (estensioni online) Metodologie in campo genomico e post-genomic

    Case Report: Hypomorphic Function and Somatic Reversion in DOCK8 Deficiency in One Patient With Two Novel Variants and Sclerosing Cholangitis

    No full text
    DOCK8 deficiency is a combined immunodeficiency due to biallelic variants in dedicator of cytokinesis 8 (DOCK8) gene. The disease has a wide clinical spectrum encompassing recurrent infections (candidiasis, viral and bacterial infections), virally driven malignancies and immune dysregulatory features, including autoimmune (cytopenia and vasculitis) as well as allergic disorders (eczema, asthma, and food allergy). Hypomorphic function and somatic reversion of DOCK8 has been reported to result in incomplete phenotype without IgE overproduction. Here we describe a case of DOCK8 deficiency in a 8-year-old Caucasian girl. The patient's disease was initially classified as autoimmune thrombocytopenia, which then evolved toward a combined immunodeficiency phenotype with recurrent infections, persistent EBV infection and lymphoproliferation. Two novel variants (one deletion and one premature stop codon) were characterized, resulting in markedly reduced, but not absent, DOCK8 expression. Somatic reversion of the DOCK8 deletion was identified in T cells. Hypomorphic function and somatic reversion were associated with restricted T cell repertoire, decreased STAT5 phosphorylation and impaired immune synapse functioning in T cells. Although the patient presented with incomplete phenotype (absence of markedly increase IgE and eosinophil count), sclerosing cholangitis was incidentally detected, thus indicating that hypomorphic function and somatic reversion of DOCK8 may delay disease progression but do not necessarily prevent from severe complications

    X Chromosome Contribution to the Genetic Architecture of Primary Biliary Cholangitis.

    Get PDF
    BACKGROUND & AIMS: Genome-wide association studies in primary biliary cholangitis (PBC) have failed to find X chromosome (chrX) variants associated with the disease. Here, we specifically explore the chrX contribution to PBC, a sexually dimorphic complex autoimmune disease. METHODS: We performed a chrX-wide association study, including genotype data from 5 genome-wide association studies (from Italy, United Kingdom, Canada, China, and Japan; 5244 case patients and 11,875 control individuals). RESULTS: Single-marker association analyses found approximately 100 loci displaying P < 5 × 10(-4), with the most significant being a signal within the OTUD5 gene (rs3027490; P = 4.80 × 10(-6); odds ratio [OR], 1.39; 95% confidence interval [CI], 1.028-1.88; Japanese cohort). Although the transethnic meta-analysis evidenced only a suggestive signal (rs2239452, mapping within the PIM2 gene; OR, 1.17; 95% CI, 1.09-1.26; P = 9.93 × 10(-8)), the population-specific meta-analysis showed a genome-wide significant locus in East Asian individuals pointing to the same region (rs7059064, mapping within the GRIPAP1 gene; P = 6.2 × 10(-9); OR, 1.33; 95% CI, 1.21-1.46). Indeed, rs7059064 tags a unique linkage disequilibrium block including 7 genes: TIMM17B, PQBP1, PIM2, SLC35A2, OTUD5, KCND1, and GRIPAP1, as well as a superenhancer (GH0XJ048933 within OTUD5) targeting all these genes. GH0XJ048933 is also predicted to target FOXP3, the main T-regulatory cell lineage specification factor. Consistently, OTUD5 and FOXP3 RNA levels were up-regulated in PBC case patients (1.75- and 1.64-fold, respectively). CONCLUSIONS: This work represents the first comprehensive study, to our knowledge, of the chrX contribution to the genetics of an autoimmune liver disease and shows a novel PBC-related genome-wide significant locus.The article is available via Open Access. Click on the 'Additional link' above to access the full-text.Published version, accepted versio
    corecore