711 research outputs found

    Epidemiological patterns of hepatitis B virus (HBV) in highly endemic areas

    Get PDF
    This paper uses meta-analysis of published data and a deterministic mathematical model of hepatitis B virus (HBV) transmission to describe the patterns of HBV infection in high endemicity areas. We describe the association between the prevalence of carriers and a simple measure of the rate of infection, the age at which half the population have been infected (A50), and assess the contribution of horizontal and perinatal transmission to this association. We found that the two main hyper-endemic areas of sub-Saharan Africa and east Asia have similar prevalences of carriers and values of A50, and that there is a negative nonlinear relationship between A50 and the prevalence of carriers in high endemicity areas (Spearman's Rank, P = 0·0086). We quantified the risk of perinatal transmission and the age-dependent rate of infection to allow a comparison between the main hyper-endemic areas. East Asia was found to have higher prevalences of HBeAg positive mothers and a greater risk of perinatal transmission from HBeAg positive mothers than sub-Saharan Africa, though the differences were not statistically significant. However, the two areas have similar magnitudes and age-dependent rates of horizontal transmission. Results of a simple compartmental model suggest that similar rates of horizontal transmission are sufficient to generate the similar patterns between A50 and the prevalences of carriers. Interrupting horizontal transmission by mass immunization is expected to have a significant, nonlinear impact on the rate of acquisition of new carriers

    High-fidelity simulations of CdTe vapor deposition from a new bond-order potential-based molecular dynamics method

    Full text link
    CdTe has been a special semiconductor for constructing the lowest-cost solar cells and the CdTe-based Cd1-xZnxTe alloy has been the leading semiconductor for radiation detection applications. The performance currently achieved for the materials, however, is still far below the theoretical expectations. This is because the property-limiting nanoscale defects that are easily formed during the growth of CdTe crystals are difficult to explore in experiments. Here we demonstrate the capability of a bond order potential-based molecular dynamics method for predicting the crystalline growth of CdTe films during vapor deposition simulations. Such a method may begin to enable defects generated during vapor deposition of CdTe crystals to be accurately explored

    Combustion synthesis of metal carbides: Part II. Numerical simulation and comparison with experimental data

    Get PDF
    Based on the general theoretical model proposed in Part I of this work [J. Mater. Res. 20, 1257 (2005)], a series of numerical simulations related to the self-propagating high-temperature synthesis in the Ti-C system is presented. A detailed and quantitative description of the various physical and chemical processes that take place during combustion synthesis processes is provided in Part II of this work. In particular, the proposed mathematical description of the system has been discussed by highlighting the relation between system macroscopic behavior obtained experimentally with the modeled phenomena taking place at the microscopic scale. Model reliability is tested by comparison with suitable experimental data being nucleation parameters adopted for the fitting procedure. The complex picture emerging as a result of the model sophistication indicates that the rate of conversion is essentially determined by the rate of nucleation and growth. In addition, comparison between model results and experimental data seems to confirm the occurrence of heterogeneous nucleation in product crystallization

    Optimization of distyryl-Bodipy chromophores for efficient panchromatic sensitization in dye sensitized solar cells

    Get PDF
    Cataloged from PDF version of article.Versatility of Bodipy (4,4-difluoro-4-bora-3a, 4a-diaza-s-indacene) dyes was further expanded in recent dye-sensitized solar cell applications. Here we report a series of derivatives designed to address earlier problems in Bodipy sensitized solar cells. In the best case example, an overall efficiency of a modest 2.46% was achieved, but panchromatic nature of the dyes is quite impressive. This is the best reported efficiency in liquid electrolyte solar cells with Bodipy dyes as photosensitizers

    Natural Killer Cells Limit Cardiac Inflammation and Fibrosis by Halting Eosinophil Infiltration

    Get PDF
    Myocarditis is a leading cause of sudden cardiac failure in young adults. Natural killer (NK) cells, a subset of the innate lymphoid cell compartment, are protective in viral myocarditis. Herein, we demonstrated that these protective qualities extend to suppressing autoimmune inflammation. Experimental autoimmune myocarditis (EAM) was initiated in BALB/c mice by immunization with myocarditogenic peptide. During EAM, activated cardiac NK cells secreted interferon γ, perforin, and granzyme B, and expressed CD69, tumor necrosis factor–related apoptosis-inducing ligand treatment, and CD27 on their cell surfaces. The depletion of NK cells during EAM with anti-asialo GM1 antibody significantly increased myocarditis severity, and was accompanied by elevated fibrosis and a 10-fold increase in the percentage of cardiac-infiltrating eosinophils. The resultant influx of eosinophils to the heart was directly responsible for the increased disease severity in the absence of NK cells, because treatment with polyclonal antibody asialogangloside GM-1 did not augment myocarditis severity in eosinophil-deficient ΔdoubleGATA1 mice. We demonstrate that NK cells limit eosinophilic infiltration both indirectly, through altering eosinophil-related chemokine production by cardiac fibroblasts, and directly, by inducing eosinophil apoptosis in vitro. Altogether, we define a new pathway of eosinophilic regulation through interactions with NK cells
    • …
    corecore