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Natural Killer Cells Limit Cardiac Inflammation
and Fibrosis by Halting Eosinophil Infiltration
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Myocarditis is a leading cause of sudden cardiac failure in young adults. Natural killer (NK) cells, a subset of
the innate lymphoid cell compartment, are protective in viral myocarditis. Herein, we demonstrated that
these protective qualities extend to suppressing autoimmune inflammation. Experimental autoimmune
myocarditis (EAM) was initiated in BALB/c mice by immunization with myocarditogenic peptide. During
EAM, activated cardiac NK cells secreted interferon g, perforin, and granzyme B, and expressed CD69, tumor
necrosis factorerelated apoptosis-inducing ligand treatment, and CD27 on their cell surfaces. The depletion
of NK cells during EAM with anti-asialo GM1 antibody significantly increased myocarditis severity, and was
accompanied by elevated fibrosis and a 10-fold increase in the percentage of cardiac-infiltrating eosino-
phils. The resultant influx of eosinophils to the heart was directly responsible for the increased disease
severity in the absence of NK cells, because treatment with polyclonal antibody asialogangloside GM-1 did
not augment myocarditis severity in eosinophil-deficient DdoubleGATA1 mice. We demonstrate that NK
cells limit eosinophilic infiltration both indirectly, through altering eosinophil-related chemokine
production by cardiac fibroblasts, and directly, by inducing eosinophil apoptosis in vitro. Altogether, we
define a new pathway of eosinophilic regulation through interactions with NK cells. (Am J Pathol 2015, 185:
847e861; http://dx.doi.org/10.1016/j.ajpath.2014.11.023)
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Myocarditis is a leading cause of sudden cardiac failure in
individuals <40 years, with 9% to 16% of cases progressing
to inflammatory dilated cardiomyopathy.1e3 Necrotizing
eosinophilic myocarditis, a subset of myocarditis, is charac-
terized by extensive cardiac eosinophilic infiltration, pro-
nounced cardiomyocyte death, and higher fatality rates.4e9

Correlations between eosinophil frequency and poor clinical
outcomes have been reported in other chronic inflammatory
disease models, including asthma, inflammatory bowel dis-
ease, and experimental autoimmune encephalomyelitis.10e12

Herein, we investigated the connection between eosinophils
and natural killer (NK) cells, highlighting a new pathway
responsible for the control of eosinophilic accumulation in
sites of inflammation.

Our group and others have reported that NK cells, an
innate lymphoid cell subset, are protective in coxsackievirus
B3 and murine cytomegalovirus animal models of myocar-
ditis by limiting viral replication.13e15 Because myocarditis is
also an autoimmune-mediated disease, it is unknown if NK
stigative Pathology.
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cells can protect against disease through limiting viral repli-
cation, as well as by reducing the autoimmune response.16,17

The data regarding NK cells and autoimmunity are extensive,
but conflicting. NK cells accumulate in joints during rheu-
matoid arthritis (RA), skin lesions during psoriasis, and
brain lesions during multiple sclerosis.18,19 Activated NK
cells from the joints of RA patients induce differentiation
of monocytes, signifying an active role in the immune
environment,20 and indicating that NK cells play a proin-
flammatory role in autoimmunity.
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This directly contradicts the observations that myocar-
ditis, RA, Sjögren syndrome, and systemic lupus erythe-
matosus patients have decreased NK cell numbers and
cytotoxicity potential.21e25 A limited study of biopsy
specimens from myocarditis patients revealed a lack of NK
cells in the cardiac tissue.26 Peripheral NK cells from RA
patients failed to induce apoptosis in major histocompati-
bility complex Iedeficient K562 cells versus healthy
controls in vitro. Patients with multiple sclerosis in
remission had higher frequencies of activated peripheral
NK cells than those with active disease, supporting the
notion that defects in NK cells are associated with
increased risk of autoimmunity.27 Altogether, it is unclear
whether autoimmune diseases are exacerbated by de-
ficiencies or excesses of NK cells, making animal studies
necessary.

Herein, we investigated the role of NK cells in autoim-
mune myocarditis using a mouse model of experimental
autoimmune myocarditis (EAM). EAM is induced by s.c.
immunization of myocarditogenic peptide in complete
Freund’s adjuvant, the same antigen targeted by autoag-
gressive T cells in coxsackievirus group B type 3 (CB3)-
induced myocarditis.28e31 Susceptible mice strains develop
myocarditis, followed by inflammatory dilated cardiomyop-
athy.29 EAM induces the immune response independent of
persistent virus, allowing us to separate autoimmune- from
virus-mediated disease. We report herein the ability of NK
cells to control myocarditis in the absence of a viral pathogen.

Materials and Methods

Mice

BALB/c, Rag1�/�, C.Cg-Gata1tm6Sho/J (DdoubleGATA1),
CD3d-IL5Tg NJ.1636, Ccr3�/�, interferon g receptor 1
(IFNgR1)�/�, and IFNg�/� mice were purchased from the
Jackson Laboratory (Bar Harbor, ME) and were bred and
maintained in the conventional housing facilities at Johns
Hopkins University (Baltimore, MD). All protocols have been
reviewed and approved by the Johns Hopkins Animal Care
and Use Committee.

Immunization with MHC614-629 and Assessment of EAM

Male 6- to 8-week-old BALB/c mice were injected s.c. with
100 mg of myocarditogenic peptide of cardiac myosin heavy
chain (MyHC), MyHC614-629, emulsified in an equal volume
of complete Freund’s adjuvant (Sigma-Aldrich, St. Louis,
MO), supplemented with 4 mg/mL of H37Ra extract (Difco,
Lawrence, KS) on days 0 and 7, as previously described.29

Pertussis toxin (500 ng in 100 mL of phosphate-buffered
saline (PBS; Sigma-Aldrich) was administrated i.p. on day
0. Mice were sacrificed on day 21; hearts were collected and
sections were stained with hematoxylin and eosin, as previ-
ously described.32e35 The degree of myocardial infiltration
and fibrosis was determined blindly by two individuals (D.C.
848
and S.O.), and histology was scored as follows: 0, no infil-
tration; 1, �10%; 2, 11% to 30%; 3, 31% to 50%; 4, 51% to
90%; and 5, >90%.29

Assessment of Fibrosis

Mice were sacrificed on day 21. Hearts were collected and
sections were stained with Masson’s trichrome, as previ-
ously described.32e35 Images of Masson’s trichromee
stained cardiac sections were uploaded into ImageJ software
version 1.48 (NIH, Bethesda, MD). The background space
was deleted and the left ventricle, the region of interest, was
selected using the freeform loop tool. Pixels within the
selected area were deconstructed into red (tissue) or blue
(collagen) channels, and fibrosis was calculated as a per-
centage of blue versus total red plus blue pixels in the region
of interest.

Echocardiography

An Acuson Sequoia 256 high-resolution microimaging
system with a 13-MHz transducer was used (Visualsonic,
Toronto, ON, Canada). In conscious mice, the heart was
imaged in the two-dimensional mode in the parasternal
short-axis view. From the M-mode, the left ventricular (LV)
wall thickness and chamber dimensions were measured. The
M-mode cursor was positioned perpendicular to the intra-
ventricular septum and the LV posterior wall, with three to
five readings taken for each measurement. The LV end
diastolic dimension, LV end systolic dimension, LV pos-
terior wall thickness at end diastole, and the intraventricular
septal wall thickness at end diastole were measured from a
frozen M-mode tracing. Fractional shortening, ejection
fraction, and relative wall thickness were calculated as
previously described.32

Intracardiac and Splenic Flow Cytometry

The aorta was cannulated to perfuse hearts with 15 mL of
cold 1� PBS for 3 minutes to remove blood. To generate
cardiac single-cell suspensions, hearts were bisected, placed
in C-tubes, and dissociated on the GentleMACS system
(Miltenyi Biotech, Bergisch Gladbach, Germany) under
program heart_01. Cells were placed in a rotating incubator
with 10 mg of collagenase II and 1.5 mg of DNase I
(Worthington Biochemical, Lakewood, NJ) for 30 minutes
at 37�C. Cells were dissociated again and rinsed twice with
1� PBS with 0.05% bovine serum albumin (BSA; Sigma-
Aldrich) and 2 mmol/L EDTA (Corning Cellgro, Corning,
NY). To generate a splenic single-cell suspension, spleens
were dissociated between two frosted glass slides and
incubated with 2 mL of ACK Lysing Buffer for 1 minute.
The cells were rinsed with 1� PBS (Mediatech, Manassas,
VA) and filtered through a 40-mm mesh. Cells (1 to 3 � 106)
were incubated with 1 mL of LIVE/DEAD Aqua (Invi-
trogen, Carlsbad, CA) for 30 minutes in 1� PBS to stain
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dead cells. Cells were then incubated with 2 mg of aCD16/
32 at 4�C for 10 minutes before the addition of fluorescent
antibodies (CD3, CD4, CD8, CD45, Ly6G, SiglecF,
NKp46, DX5, CD11b, CD11c, and F4/80) (eBioscience,
San Diego, CA). Samples were incubated with antibodies at
4�C for 10 to 20 minutes, washed in 1 mL of 0.5% BSA in
1� PBS, and fixed in fixation and permeabilization buffer
(BD Bioscience, Franklin Lakes, NJ) for 30 minutes. For
intracellular cytokine staining, suspensions were incubated
for 4 to 6 hours with 20 ng/mL 4b-phorbol 12-myristate 13-
acetate, 1 mg/mL ionomycin, and Golgistop (BD Biosci-
ence). Cells were surface stained and then permeabilized
with 1� permeabilization buffer (BD Bioscience) overnight
at 4�C. Cells were then incubated with anti-cytokine anti-
bodies (eBioscience) for 30 minutes at 4�C. Cells were
washed in 1� permeabilization buffer and resuspended in
100 to 200 mL of buffer. Samples were acquired on the LSR
II quad-laser cytometer running FACSDiva 6 (BD Immu-
nocytometry, Franklin Lakes, NJ). Data were analyzed with
FlowJo version 7.6 (Treestar Software, Ashland, OR).

Depletion of NK Cells with Anti-Asialo GM1 Antibody

To deplete NK cells before immunization, 6-week-old male
BALB/c mice were injected i.p. with 1 mg of anti-asialo GM1
(Wako Chemicals USA, Richmond, VA) antibody every day 6
days before the first immunization (days -6 to 0).36,37 To
maintain decreased levels of NK cells after the first immuni-
zation (day 0), 1 mg of anti-asialo GM1 antibody was admin-
istered every other day until day 20. Control mice received
1 mg of rabbit IgG (Sigma-Aldrich) by the same schedule.

Isolation of Primary Adult Mouse Cardiac Fibroblasts

Primary adult mouse cardiac fibroblasts were isolated with
minor modifications from protocols previously described.38

Hearts dissected from 6- to 8-week-old naïve BALB/c mice
were perfused through the aorta with warmed 37�C calcium-
free buffer, followed by collagenase type II (Worthington
Biochemical, Lakewood, NJ) for 15 minutes. Tissue was
dissolved into a single-cell suspension and filtered through a
70-mm mesh. Cells were seeded, and nonadherent cells were
washed off after 1 hour. Cells were either collected imme-
diately in TRIzol reagent (Invitrogen) for ex vivo experi-
ments or passaged twice before in vitro use in complete
Dulbecco’s modified Eagle’s medium with 20% fetal bovine
serum (Hyclone Laboratories, Logan, UT), 1� penicillin/
streptomycin, 25 mmol/L HEPES, 1� Anti-Anti (Gibco,
Carlsbad, CA), and 1� nonessential amino acids.

Isolation of Primary NK Cells

NK cells were negatively isolated from Rag1�/� BALB/c
spleens by manual magnetic cell sorting using the Mouse
NK Isolation Kit II (Miltenyi Biotech) and cultured for
24 hours with 10 ng/mL IL-12 and 5 ng/mL IL-15.
The American Journal of Pathology - ajp.amjpathol.org
Isolation of Primary Eosinophils

Eosinophils were isolated from naïve CD3d-IL5Tg NJ.1636
peripheral blood mononuclear cells using a Percoll (GE Life-
sciences, Marlborough, MA) gradient and subsequent negative
fluorescence-activated cell sorting for SSChiLy6G�DX5�

eosinophils.

Apoptosis Measurement

Cells were harvested from culture and rinsed twice with 1�
PBS with 0.05% BSA (Sigma-Aldrich) and 2 mmol/L EDTA
(Corning Cellgro). The cells were rinsed with 1� PBS and
incubated with 1 mL of LIVE/DEAD Aqua (Invitrogen) for 30
minutes in 1� PBS to stain dead cells. Cells were then incu-
bated with 2 mg of aCD16/32 at 4�C for 10 minutes before the
addition of fluorescent antibodies (Ly6G, SiglecF, and NKp46)
(eBioscience). Samples were incubated with antibodies at 4�C
for 10 to 20 minutes and washed in 1 mL of 0.5% BSA in 1�
PBS. Cells were then resuspended in 1� Annexin Binding
Buffer (eBioscience) and stained with 2 mL of annexin V. Cells
were acquired after 15 minutes of incubation on ice on the
LSRII flow cytometer (Becton Dickenson, Franklin Lakes, NJ).

mRNA

For real-time quantitative PCR (qPCR), cells or tissues were
homogenized in TRIzol reagent and chloroform extracted.
Samples were DNase treated, and cDNA libraries were
made using iScript Reverse Transcriptase Supermix (Bio-
Rad, Hercules, CA). mRNA was amplified using SYBR
Green (Applied Biosystems, Foster City, CA), and all
values were calculated against hypoxanthine-guanine
phosphoribosyltransferase (HPRT) mRNA. Values were
controlled against isotype control groups and shown as a
function of fold induction using the formula 2�D(DCT).

Murine primers were as follows (forward and reverse
primers, respectively): Hprt, 50-TCCTCCTCAGACCGCT-
TTT-30 and 50-TCTGCTGGAGTCCCCTTG-30; collagen 1a1
(Col1a1), 50-AGCAGGTCCTTGGAAACCTT-30 and 50-
AAGGAGTTTCATCTGGCCCT-30; Col1a2, 50-GTGAAC-
GGGGCGAAGCTGGTT-30 and 50-GCGGCTCCTGGAA-
GCCCATTTG-30; Col1a3, 50-AACCTGGTTTCTTCTCA-
CCCTTC-30 and 50-ACTCATAGGACTGACCAAGGTGG-
30; Il4, 50-AAGGCAACTTTCTTGATATT-30 and 50-GG-
CCTTTCAGACTAATCTT-30; Il13, 50-TGAGGAGCT-
GAGCAACATCACACA-30 and 50-TGCGGTTACAGAG-
GCCATGCAATA-30; eosinophil peroxidase, 50-AGATG-
CAACAACAAGAAGCATCC-30 and 50-TGATTGGAGA-
CATCCCGGAC-30; major basic protein 2, 50-TGAAA-
CTTCTGACTCCAAAAGCC-30 and 50-CGGCATTAGCT-
CTTCCCCT-30; Il1b, 50-CAACCAACAAGTGATATTC-
TCCATG-30 and 50-GATCCACACTCTCCAGC-TGCA-30;
transforming growth factor (Tgf) b1, 50-CTCCCGTGGC-
TTCTAGTGC-30 and 50-GCCTTAGTTTGGACAGGATC-
TG-30; chemokine ligand 11 (Ccl11), 50-GAATCACCAACA-
849
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ACAGATGCAC-30 and 50-TCCTGGACCCACTTCTTCTT-
30; Ccl24, 50-TCTTAGGGCCCTTCTTGGTG-30 and 50-AA-
TTCCAGAAAACCGAGTGG-30; and Cxcl9, 50-GTGGAG-
ACCACCAGAGTTGG-30 and 50-TGCCACTAAGCTACA-
GCCAC-30.

Enzyme-Linked Immunosorbent Assays

Samples were run using tissue homogenates in 1� PBS or
cell culture supernatant using enzyme-linked immunosorbent
assay kits for Ccl11 (RND Biosystems, Minneapolis, MN) or
a multiplex LINCO kit (Millipore, Jaffery, NH).

Statistical Analysis

Multiple group comparisons were performed by ordinary one-
way analysis of variance, followed by the Tukey-Kramer post
test (if parametric) or Kruskal-Wallis, followed byDunn’s post
test (if nonparametric) (GraphPad Prism 5; GraphPad, San
Diego, CA). All statistics of two groups were performed
by Student’s t-test. P < 0.05 was considered statistically
significant.

Results

NK Cells Suppress Cardiac Inflammation and Severe
Myocarditis in EAM

To determine whether NK cells modulate EAM, we depleted
NK cells in vivo using 1 mg of anti-asialogangloside GM-1
(ASGM-1) polyclonal antibody injected i.p. from day -6 to day
21, as described in Materials and Methods (Figure 1A). The
depletion caused myocarditis to increase in severity as
assessed by histology and total count of infiltrating CD45þ

cells in the heart at the peak of inflammation on day 21
(Figure 1, BeD). This was accompanied by increased circu-
lating antieMyHCa614-629-specific IgG antibodies
(Figure 1E). At this time, ASGM-1 antibody reduced
CD3�DX5þNKp46þ NK cells, but not CD3þDX5þ NK T
cells (Figure 1, F and G) in the spleen and heart during EAM.
ASGM-1 had little effect on other cell types in naïve animals,
because antibody treatment depleted CD3�DX5þNKp46þ

NK, but not CD3þDX5þNKp46þ, NK T cells or
Ly6GloSiglecFþ eosinophils (Supplemental Figure S1).
Development of severe myocarditis after depletion of NK cells
suggests that NK cells protect from severe cardiac
inflammation.

Absence of NK Cells Increases Collagen Deposition in
the Heart

We explored whether NK cells inhibit fibrosis development
and inflammation. To assess fibrosis quantitatively, images
of cardiac histology slides stained by Masson’s trichrome
were processed by ImageJ software to enumerate collagen-
positive (blue) versus nonfibrotic (red) pixels. NK-depleted
850
animals had increased cardiac collagen deposition on day 21
of EAM (Figure 2, A and B). This accompanied a decline in
cardiac function, as shown by decreased ejection fraction
with increased LV end systolic diameter and no changes in
LV end diastolic diameter or intraventricular septal thick-
ness (Figure 2, CeF). We quantified active collagen pro-
duction in NK-depleted mice at day 21 and showed that NK
depletion led to increased mRNA levels of collagen 1 and
collagen 3 in the heart (Figure 2, GeI). Thus, the depletion
of NK cells during EAM leads to increased cardiac fibrosis
and a decline in cardiac function.

Activated NK Cells Accumulate in the Heart during EAM

To examine NK cell kinetics during EAM, we quantified
cardiac NK cells by flow cytometry (Figure 3A).
CD3�DX5þNKp46þ NK cells increased from day 0 to day
21 in absolute counts; however, their proportion out of
CD45þ cells was stable (Figure 3, B and C). To determine
their phenotype, we profiled cytokine and receptor expression
from NK cells by flow cytometry on day 21 of EAM to see if
they represented an activated population compared to those in
the periphery. Cardiac NK cells produced more Ifng than
splenic NK cells, but equivalent levels of Il-13 (Figure 3, D
and E). Greater proportions of cardiac NK cells up-regulated
perforin and were positive for lysosomal-associated mem-
brane protein 1 (LAMP-1), a correlate for granzyme B
secretion (Figure 3, F and G). In addition, cardiac NK cells
up-regulated activation markers CD27, CD69, and tumor
necrosis factorerelated apoptosis-inducing ligand treatment
(Figure 3, HeJ), with decreased NKG2D (Figure 3K). Thus,
cardiac NK cells secrete Ifng and have increased expression
of multiple activation receptors compared to NK cells in
periphery during the course of myocarditis.

Activated Fibroblasts Are Not Targeted for Cytotoxic
Killing by NK Cells in Vitro

The depletion of NK cells led to accelerated fibrosis
(Figure 2) in the heart; therefore, we hypothesized that NK
cells lysed activated fibroblasts, as described in animal
models of liver fibrosis.39,40 We explored this putative
mechanism using a co-culture system in vitro with an
outcome focused on cell death. First, adult cardiac fibro-
blasts were isolated from naïve BALB/c hearts and passaged
twice. The presence of contaminating macrophages was
ruled out by qPCR and immunofluorescence (Supplemental
Figure S2). Second, NK cells were isolated from naïve
or poly(I:C)-treated BALB/c spleens (Supplemental
Figure S3A). Cardiac fibroblasts were activated with
angiotensin II, illustrated by increased expression of
vimentin (Supplemental Figure S3B). Finally, we co-
cultured cardiac fibroblasts and NK cells together for 48
hours at a 1:1 ratio. Cardiac fibroblasts were stained green
with calcein AM (live cells) and red with ethidium homo-
dimer (dead cells) and examined by immunofluorescence
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Depletion of natural killer (NK) cells increases cardiac inflammation and the severity of experimental autoimmune myocarditis (EAM).
A: Schematic of phosphate-buffered saline (PBS), rabbit IgG, and asialogangloside GM-1 (ASGM-1) antibody treatment schedule throughout EAM.
Representative histology from rabbit IgG (RaIgG) and ASGM-1etreated animals (B) and scores of hematoxylin and eosinestained cardiac sections from
PBS, rabbit IgG, and ASGM-1 antibody treated animals at day 21 of EAM (analysis of variance P < 0.01; C). D: Total CD45þ cells infiltrating the hearts of
isotype control and ASGM-1etreated animals at day 21 of EAM, as assessed by flow cytometry (P < 0.001). E: Levels of anti-myocarditogenic peptide of
cardiac myosin heavy chain (MyHC)614-629 total IgG antibodies in the serum of PBS, isotype control, and ASGM-1etreated animals at day 21 of EAM
(analysis of variance P < 0.001). Percentage of CD3�DX5þNKp46þ NK cells in the heart (P < 0.001) and spleen (P < 0.002) (F) and CD3þDX5þ NK T cells
out of CD45þ cells (G) of rabbit IgG and ASGM-1 monoclonal antibodyetreated wild-type (WT) mice at day 21 of EAM, as assessed by flow cytometry.
**P < 0.05, ***P < 0.001.
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Figure 2 Depletion of natural killer cells increases collagen deposition and fibrosis during experimental autoimmune myocarditis (EAM). A: Representative
histology of Masson’s trichromeestained cardiac sections from rabbit IgG (RaIgG) and asialogangloside GM-1 (ASGM-1)etreated animals at day 21 of EAM. B:
Enumeration of fibrosis by calculation of red versus blue pixels on ImageJ software (P Z 0.012). Statistics calculated by unpaired t-test. C: Ejection fraction
(P Z 0.026) calculated from fractional shortening and left ventricular (LV) diastole and systole. LV end diastolic dimension (LVEDD; D) and LV end systolic
dimension (LVESD; P Z 0.03; E). F: Intraventricular septum diameter (IVS), as measured by echocardiography. Statistics by ordinary one-way analysis of
variance with post testing by Tukey’s multiple-comparisons test. Collagen production as measured using real-time quantitative PCR for collagen 1a1 (Col1a1;
P Z 0.04; G), collagen 1a2 (Col1a2; P Z 0.03; H), and collagen 3a1 (Col3a1P Z 0.02; I). Values calculated as a function of hypoxanthine-guanine
phosphoribosyltransferase (HPRT) and compared against rabbit IgG. Statistics calculated by unpaired t-test. *P < 0.05.
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Figure 3 Activated natural killer (NK) cells accumulate in the heart during experimental autoimmune myocarditis (EAM). A: Gating strategy for cardiac
CD3�DX5þNKp46þ NK cells. Absolute numbers (analysis of variance P Z 0.002; B) and percentages (C) of CD3�DX5þNKp46þ NK cells on days 0, 14, and 21 of
EAM by flow cytometry. Significance by ordinary one-way analysis of variance with post testing by Tukey’s multiple-comparisons test. To determine NK physiology,
cardiac and splenic CD3�DX5þNKp46þ NK cells were stained at day 21 of EAM. Percentage of interferon g (IFNg; P< 0.001; D), Il-13 (E), and perforin (P< 0.001;
F) positive cells were based on intracellular antibody staining after 4 to 6 hours of 4b-phorbol 12-myristate 13-acetate/ionomycin and Golgistop in vitro. G:
Percentage of lysosomal-associated membrane protein 1 (LAMP-1þ), a marker for granzyme B release, staining (P < 0.001). Percentage of NK cells positive for
activation-associated markers CD27 (P < 0.001; H), CD69 (P < 0.001; I), tumor necrosis factorerelated apoptosis-inducing ligand treatment (TRAIL; P < 0.001;
J), and NKG2D (P < 0.001; K). DeF: Significance calculated by unpaired t-test. **P < 0.01, ***P < 0.001. FSC, forward scatter; SSC, side scatter.

NK Cells in Autoimmune Myocarditis
microscopy (Supplemental Figure S3C). Although NK cells
induced cell death of cardiac fibroblasts, no difference was
seen between untreated and activated cardiac fibroblasts
(Supplemental Figure S3, D and E), indicating that NK-
mediated killing of activated fibroblasts was not a likely
mechanism.

NK Cells Prevent Eosinophils from Accumulating in the
Heart during EAM

Given the lack of direct killing seen between NK cells and
activated fibroblasts, we hypothesized that NK cells altered
disease severity and fibrosis in EAM through alterations
in the hematopoietic populations infiltrating the heart.
Therefore, we examined changes in the cardiac infiltrate
during EAM after the depletion of NK cells by flow
cytometry. NK-depleted animals had increased proportion
of SSChiCD45þ granulocytic cells (Figure 4A). We identi-
fied that SSChiLy6GloSiglecFþ eosinophils were responsible
The American Journal of Pathology - ajp.amjpathol.org
for the increase in granulocytic cells. SSChiLy6GloSiglecFþ

eosinophils increased twofold on day 14 and 10-fold on day
21 out of CD45þ cells (Figure 4B). We found no changes in
SSChiLy6Ghi neutrophils on day 14 or 21 (Figure 4C).

To determine whether the increased eosinophils in the
heart seen in ASGM-1etreated mice during EAM were
a cardiac-specific observation or a reflection of systemic
eosinophilia in response to NK depletion, we analyzed the
blood and spleens of mice depleted of NK cells during EAM
at days 14 and 21. We found that, although there was a mild
trend toward increased eosinophils, it was not significant
(Supplemental Figure S4), underlining that the mechanism
of eosinophilic control by NK cells is specific for the cardiac
environment during EAM.

We also explored whether there were shifts in any other
infiltrating cardiac populations during EAM. SSCmidCD11bþ

myeloid cells, as a percentage of total CD45þ cells
(Supplemental Figure S5A), remained unchanged, as were
CD11bþLy6Chi and CD11bþLy6Clo monocytes as a
853
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Figure 4 Depletion of natural killer (NK) cells increases eosinophilic
infiltration in the heart. A: Representative side-scatter histograms of iso-
type and asialogangloside GM-1 (ASGM-1) antibody treated animals at day
21. Percentage of Ly6GloSiglecFþ eosinophils from cardiac CD45þ cells on
day 14 (P Z 0.043) and day 21 (P < 0.001) (B) and SiglecF�Ly6Ghi

neutrophils at days 14 and 21 (C). Significance calculated by unpaired t-
test. *P < 0.05, ***P < 0.001. SSC, side scatter.
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proportion of total SSCmidCD11bþ cells on day 21
(Supplemental Figure S5, B and C). The proportions of total
infiltrating CD45þ cells of both CD11chi dendritic cells and
FcεRIaþcKitþ mast cells were also unaltered (Supplemental
Figure S5, D and E). Also comparable were proportions of
CD11b�B220þ B cells and CD3þ and CD3þCD4þ T cells
(Supplemental Figure S5, FeH) of total CD45þ cells.
Because EAM and eosinophil trafficking are influenced by
CD4þ T-cell polarization,12,28,41 we examined if NK cells
affected types 1, 2, and 17 helper T cell (Th1, Th2, and
Th17, respectively) populations during EAM.12,28,37 No
changes in IFNgþCD3þCD4þ Th1 cells in the heart after
NK depletion were found (Supplemental Figure S6A).
854
However, Il-13þ Th2 and Il-17Aþ Th17 cells, as a fraction
of total CD3þCD4þ cells, increased at day 21, but not day 14
(Supplemental Figure S6, B and C). Thus, depletion of NK
cells resulted in accumulation of eosinophils in the heart,
reaching up to a 10-fold increase at the peak of inflammation,
and was accompanied by a shift toward mixed Th2 and Th17
milieu in the heart.

Eosinophils in the Heart of ASGM-1eTreated Mice Have
an Activated Profile

To determine whether the increased flux of eosinophils to
the heart played a role in the increased disease severity, we
examined the phenotype of the heart-infiltrating eosinophils
for their maturation and activation status. It has been shown
that mature eosinophils from the lungs of helminth-infected
or the blood of asthma-induced mice have increased
expression of CD11b and SiglecF protein and decreased
expression of eosinophil granuleeassociated genes due
to these granules being fully preloaded with protein.42,43

Indeed, paraffin-embedded cardiac tissue sections of
ASGM-1etreated animals with EAM showed positive
staining for eosinophil granule major basic protein
(Figure 5A), and cardiac eosinophils from ASGM-1etreated
hearts had up-regulated levels of SiglecF and CD11b protein
compared to spleen cells at day 21 (Figure 5, B and C).
Consistent with this activated phenotype, cardiac eosino-
phils down-regulated expression of eosinophil granulee
associated eosinophil peroxidase and major basic protein 2
due to their granules having already been formed during the
immature stages of development (Figure 5, D and E). Car-
diac eosinophils also had increased expression of Il-1b,
Ccl11, and Il-6, and showed no changes in Il-4 or Il-13
expression (Figure 5, FeJ). In summary, eosinophils infil-
trating the heart at day 21 of ASGM-1etreated mice
represent a distinct and activated population.

Eosinophils Are Necessary for Increased Myocarditis
Severity in the Absence of NK Cells

To establish if the greater EAM severity in NK-depleted ani-
mals depended on the influx of activated and mature eosino-
phils, we depleted NK cells from eosinophil-deficient
DdblGATA1 mice.44 These mice have a deletion in the
GATA1 promoter, leading to a specific ablation in eosinophils
due to the inability of progenitors to differentiate in the bone
marrow. In the absence of eosinophils, NK depletion had no
effect on cardiac inflammation, as assessed from histological
readings by two independent investigators using hematoxylin
and eosinestained cardiac slides at day 21 of EAM (Figure 6,
A and B). In addition, we saw no increases in fibrosis evalu-
ated by Masson’s trichrome staining. In addition, cardiac
function was preserved, as shown by no differences in echo-
cardiographic parameters between NK-depleted and isotype
DdblGATA1 groups at day 21 (Figure 6, CeG).DdblGATA1
mice did not respond to ASGM-1 treatment with the increased
ajp.amjpathol.org - The American Journal of Pathology
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Figure 5 Activated eosinophils infiltrate the heart in the absence of natural killer cells. A: Immunofluorescence staining of paraffin-embedded cardiac
sections from asialogangloside GM-1 (ASGM-1)etreated mice on day 21 of experimental autoimmune myocarditis (EAM). Sections stained with 1:500 rat anti-
major basic protein (MBP) primary or rat IgG antibody, 1:200 anti-rat donkey phosphatidylethanolamine (PE)eTexas Red antibody, and DAPI. Relative mean
fluorescence intensity of SiglecF (P < 0.001; B) and CD11b (P < 0.001; C) on Ly6GloSiglecFþ eosinophils from the heart and spleen of ASGM-1etreated
animals at day 21 of EAM by flow cytometry. Levels of eosinophil peroxidase (Epx; PZ 0.05; D), major basic protein 2 (Prg2; PZ 0.05; E), Il1b (PZ 0.04; F),
chemokine ligand (Ccl) 11 (PZ 0.03; G), Il6 (PZ 0.02; H), Il4 (I), and Il13 (J) mRNA from fluorescence-activated cell sorted Ly6GloSiglecFhi eosinophils from
ASGM-1etreated mice at day 21 of EAM. Values shown as fold induction compared to spleen and controlled against hypoxanthine-guanine phosphor-
ibosyltransferase (HPRT). Significance calculated by Student’s t-test. *P < 0.05, ***P < 0.001. MFI, mean fluorescence intensity.
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Figure 6 Eosinophil-deficient mice are
phenotypically unresponsive to natural killer
depletion. Representative histology from rabbit
IgG (RaIgG) and asialogangloside GM-1 (ASGM-1)
antibody-treated (A) and scores of rabbit
phosphate-buffered saline, IgG, and ASGM-1
antibody-treated DdblGATA1 animals (analysis of
variance; B). Representative histology (C) and
percentage of fibrosis (D) by Masson’s trichrome
staining of cardiac sections at day 21 of experi-
mental autoimmune myocarditis (EAM) from rab-
bit IgG and ASGM-1etreated mice. Ejection
fraction (E), left ventricular end diastolic dimen-
sion (LVEDD; F), and left ventricular end systolic
dimension (LVESD; G) by echocardiography at day
21. Collagen 1 and 3 production as measured using
real-time quantitative PCR for collagen 1a1
(Col1a1; H), collagen 1a2 (Col1a2; I), and collagen
3a1 (Col3a1; J) mRNA in hearts of rabbit IgG and
ASGM-1etreated animals at day 21 of EAM. Values
calculated as a function of hypoxanthine-guanine
phosphoribosyltransferase (HPRT) levels and
compared against rabbit IgG. Statistics calculated
by unpaired t-test.
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collagen 1 and 3 mRNA seen in wild-type mice (Figure 6,
HeJ). Therefore, myocarditis severity and cardiac fibrosis in
DdblGATA1 mice are unaffected by NK cell depletion. This
would indicate that NK cells protect the heart from eosino-
philic accumulation and the subsequent development of severe
myocarditis.

Ccl11 Is Involved But Not Required for the Control of
Eosinophilic Infiltration by NK Cells

NK cells are not major producers of eosinophil-associated
chemokines.45e47 However, we have determined that car-
diac fibroblasts are an active source of cytokines and
856
chemokines and can control the types of immune cells
infiltrating the heart during myocarditis.48 Eotaxins are
prominent modulators of eosinophil trafficking and accu-
mulation. In EAM, the depletion of NK cells increased
eotaxin expression in whole heart tissue (Figure 7A) and
isolated cardiac fibroblasts on day 21 of EAM (Figure 7,
AeC), as seen by qPCR. To examine if NK cells affected
eotaxin production in vitro, we co-cultured naïve adult
cardiac fibroblasts and NK cells for 96 hours. NK cells
suppressed Il-4emediated Ccl11 (Figure 7D) and increased
IP-10 (Cxcl10), a negative eosinophil regulator, produced
by cardiac fibroblasts (Supplemental Figure S7A). Down-
regulation of monocyte chemoattractant protein-1 (Ccl2),
ajp.amjpathol.org - The American Journal of Pathology
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Figure 7 Chemokine ligand (Ccl) 11 is involved, but not required, for the suppression of eosinophils by natural killer (NK) cells. Ccl11 mRNA at day 21 of
experimental autoimmune myocarditis (EAM) in whole heart (P Z 0.004; A) and isolated cardiac fibroblasts of rabbit IgG and asialogangloside GM-1
(ASGM-1)etreated animals (B). C: CCL24 mRNA in isolated cardiac fibroblasts of rabbit IgG (RaIgG) and ASGM-1etreated animals at day 21 of EAM. D:
Ccl11 in the supernatant after a 96-hour culture of wild-type cardiac fibroblasts with or without NK cells (P < 0.001). E: Percentage of Ly6GloSiglecFþ

eosinophils at day 21 of EAM in rabbit IgG and ASGM-1etreated Ccr3�/� animals. Significance by Student’s t-test. *P < 0.05, ***P < 0.001.
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macrophage inflammatory protein-1b (Ccl4), regulated
on activation normal T cell expressed and secreted (Ccl5),
and keratinocyte chemoattractant (Cxcl1) (Supplemental
Figure S7, BeE) also occurred in the presence of NK
cells. In response to Il-4, cardiac fibroblasts produced Il-5,
but were unresponsive to NK cells (Supplemental
Figure S7F).

To address whether NK suppression of eotaxins would be
sufficient to prevent eosinophil accumulation, we used mice
deficient in Ccr3, the sole receptor of Ccl11 and Ccl24.49

Depletion of NK cells in Ccr3�/� mice still resulted in the
influx of eosinophils into the heart during EAM (Figure 7E),
indicating that NK cells do not control eosinophils through
only eotaxins and that other eosinophilic chemokines are
able to drive eosinophil trafficking in the absence of NK
cells. Thus, Ccl11 is involved, but not required, for the
control of eosinophilic infiltration in the heart by NK cells.

Ifng and Cxcl9 Are Not Required by NK Cells to Control
Eosinophilic Infiltration

During EAM, IFNgwas significantly up-regulated in cardiac
NK cells accumulating in the heart. Monokine induced by
interferon-g (Cxcl9), a major negative regulator of eosinophil
trafficking, is directly controlled by Ifng. We determined that
in ASGM-1etreated mice, expression of Cxcl9 was
decreased compared to the isotype control groups at day 21 of
EAM (Supplemental Figure S8A), and that similar to Cxcl10
(Supplemental Figure S7A), the presence of NK cells in
culture with primary cardiac fibroblasts significantly
increased levels of Cxcl9 in the supernatant (Supplemental
Figure S8B). In addition, our data indicate that Ifng pro-
duced by NK cells is absolutely required for Cxcl9 produc-
tion being instigated, because Ifng receptoredeficient
(IFNgR1�/�) cardiac fibroblasts were unresponsive to the
presence of NK cells (Supplemental Figure S8C). These
findings were consistent in vivo, because we observed sig-
nificant decreases in the protein levels of Cxcl9 in the hearts
of IFNg�/� animals at day 14 of EAM (Supplemental
The American Journal of Pathology - ajp.amjpathol.org
Figure S8D). By using IFNg�/� mice to model the effects
of diminished Cxcl9 and the absence of NK-sourced Ifng, we
depleted NK cells in IFNg�/� mice and examined eosino-
philic accumulation in the heart on day 21. Similar to the
Ccr3�/� mice, IFNg�/� mice still continued to accumulate
significantly more eosinophils in the heart (Supplemental
Figure S8E). In conclusion, both Cxcl9 and IFNg may
contribute to the NK-mediated control of eosinophils in the
heart, but they are not required.

NK Cells Directly Induce Apoptosis of Eosinophils

Finally, we examined whether NK cells could inhibit
eosinophil infiltration through direct interactions between
the two cell types. Recent studies showed that human NK
cells induce activation and apoptosis of eosinophils.50,51 We
explored this as one avenue of NK-mediated control of
eosinophil accumulation in the heart during cardiac
inflammation. NK cells and eosinophils were negatively
sorted from naïve Rag1�/� spleens and Cd3deIL-5e
transgenic (NJ.1638) blood, respectively, and co-cultured
for 3 hours at 5:1 and 10:1 ratios. Compared to eosino-
phils alone, NK cells induced apoptosis, but not degranu-
lation, as measured by side scatter, of eosinophils in a dose-
dependent manner (Figure 8A). At this 3-hour time point,
early apoptosis was measurable using annexin V, but no
changes were yet seen with a viability dye measured
through cell permeabilization (Figure 8, B and C). NK cells
did not induce eosinophil activation either, as shown by
changes in levels of SiglecF and CD11b, unlike reports in
human cells (Figure 8, D and E).51 In summary, we show
that, similarly to human NK cells, mice NK cells cause
apoptosis of eosinophils.

Discussion

Previous studies13,14 have demonstrated that NK cells limit
disease severity in CB3- and mouse cytomegaloviruse
induced myocarditis by suppressing virus replication. In
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Figure 8 Natural killer (NK) cells induce apoptosis in eosinophils (Eos)
in vitro. A: Representative side scatter versus SiglecF and LIVE/DEAD
viability dye versus annexin V plots of Ly6GloSiglecFþ eosinophils after a
3-hours co-culture with primary naïve NK cells. Percentage of annexin
Vepositive (analysis of variance P < 0.001; B) and LIVE/DEAD staine
positive Ly6GloSiglecFþ eosinophils (C). Average mean fluorescence in-
tensity of activation markers SiglecF (D) and CD11b (E) of Ly6GloSiglecFhi

eosinophils. Statistics calculated by one-way analysis of variance with post
testing by Tukey’s test. *P < 0.05, ***P < 0.001. SSC, side scatter.
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addition, we showed that depletion of NK cells rendered
previously resistant strains of mice susceptible to viral
myocarditis.13 Herein, we demonstrate that the protective
qualities of NK cells extend beyond viral inhibition. Acti-
vated NK cells accumulated in the heart throughout EAM
and actively suppressed autoimmune-mediated inflamma-
tion, because the depletion of NK cells during EAM led to
increased cardiac inflammation and fibrosis. This was
caused primarily by a 10-fold increase in the proportion of
eosinophils in the cardiac infiltrate, because eosinophil-
deficient DdblGATA1 animals did not display increased
myocarditis severity in response to NK cell depletion.
Furthermore, this increase of eosinophils was specific for
the cardiac environment and was not found in the periphery
during EAM. On the basis of these data, we conclude that
858
NK cells limited eosinophil accumulation in the heart during
EAM and in the absence of NK cells, increases in eosino-
phils drove the amplified disease severity.
Similar to studies in RA patients, we showed that NK cells

occupying local sites of autoimmune-mediated inflammation
have a distinct and activated phenotype compared to those
in the periphery.20,22 Cardiac NK cells up-regulated CD27,
tumor necrosis factorerelated apoptosis-inducing ligand
treatment, and CD69 on their cell surfaces, but down-
regulated NKG2D. The down-regulation of NKG2D is sur-
prising because nonobese diabetes can be prevented with
anti-NKG2D antibodies and NKG2Dþ cells are correlated
with clinical Crohn’s and RA severity.52e54 However, total
NKG2D in these studies was targeted, including those
expressed on NK T and dg T cells.55 Therefore, the role of
NKG2D on NK cells is undetermined and its down-
regulation in EAM indicates it may have a minimal role in
autoimmunity.
Our finding that eosinophils promote severe cardiac

inflammation is supported by other reports of eosinophils
driving myocarditis severity. In CB3-induced myocarditis,
infiltrating eosinophils significantly increased disease. Soluble
ST2, an Il-33 receptor decoy, prevented eosinophilia and
reduced myocarditis without altering viral burden.56 Similarly,
IFNg�/�Il17A�/� mice display massively inflamed hearts and
up to 50% fatality by day 21 of EAM, a phenotype that is
reversed in the absence of eosinophils by crossing these ani-
mals to dblGATA1 mice.57

Although the numbers of eosinophils infiltrating the
heart after NK cell depletion (10% to 15%) during EAM do
not approach clinical or animal models of eosinophilic
myocarditis (up to 50%), we clearly demonstrate that even
this moderate increase has significant consequences on
disease outcome.56,57 Clinically, infiltrating eosinophils are
found in severe giant cell myocarditis and these patients,
along with necrotizing eosinophilic myocarditis, have poor
clinical prognosis.58,59 Other clinical entities in which
moderate levels of eosinophils are found infiltrating the
myocardium include hypersensitivity and drug reactions,
parasitic infections, vasculitis and granulomatous diseases,
and idiopathic hypereosinophilic syndrome.60 Little is known
about the cardiac eosinophil profile; however, in all cases,
cardiac necrosis, thrombosis, and fibrosis are found.61

We found that eosinophils in the hearts of ASGM-1e
treated animals displayed a mature, activated profile with
fully formed granules containing cationic proteins. Cardiac
tissue stained positive for major basic protein by immuno-
fluorescence. qPCR results showed the down-regulation of
eosinophil peroxidase and major basic protein mRNA in
eosinophils isolated from the heart versus the spleen at day
21 of EAM, indicating that the active transcription of these
proteins, characteristic of immature eosinophils, was no
longer taking place. Mature eosinophils contain fully
formed granules of these cationic proteins to be released
instantly on specific activation and, therefore, have no need
for further transcription of these genes.43 Furthermore, their
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up-regulation of SiglecF and CD11b is consistent with
activated lung eosinophils from Nippostrongylus brasi-
liensiseinfected mice.42,50 This up-regulation of activation
markers cannot be attributed to the collagenase treatment
implemented for cardiac dissociation because we have
found the treatment with collagenase does not alter cell
phenotypes (data not shown). Cardiac eosinophils did not
up-regulate Il-4 and Il-13, despite reports that eosinophils
can regulate muscle repair through Il-4 and Il-13.62 How-
ever, cardiac eosinophils significantly up-regulated Il-6 and
Tgf-b, mirroring activated eosinophils in airway inflamma-
tion and fibrosis models.50,63e65 These cytokines are
involved in multiple fibrosis pathways and may be respon-
sible for the eosinophil-mediated fibrosis seen in ASGM-
1etreated wild-type mice.

An alternative hypothesis for the regulation of disease
severity by NK cells through eosinophils involves alter-
ations in monocytes. Monocytes, as the majority of cardiac
infiltrating cells during EAM, can alter disease severity.33,48

We have shown that monocyte control of disease was due to
alterations in Th17 cells.33,34,41,66 However, the increased
disease in the absence of NK cells was not accompanied by
changes in SSCmidCD11bþ monocytes or the Ly6Chi in-
flammatory monocyte subpopulation. Furthermore,
although we did see increases in Th2 and Th17 populations,
these shifts occurred after increases in eosinophilic infiltra-
tion and are likely symptomatic, as opposed to causative, of
these changes. Therefore, we do not believe that NK cells
protect against autoimmune-mediated inflammation through
the regulation of monocytic or T-cell populations.

To investigate how NK cells prevent eosinophils from
accumulating in the heart during myocarditis, we turned our
attention to interactions between cardiac fibroblasts and NK
cells. Studies have shown that tumor fibroblasts interfere with
NK cell cytotoxicity, and synoviocytes in RA express NK-
receptor ligands that result in NK cell activation.67,68 How-
ever, we did not find that NK cells targeted activated cardiac
fibroblasts for killing, unlike studies in liver fibrosis.39,40,69

Our group recently showed that Il-17Aestimulated cardiac
fibroblasts produce key chemokines and cytokines that are
critical downstream effectors in recruiting and differentiating
myeloid cells.48,70 We suspect that cardiac fibroblasts secrete
unique profiles of cytokines and chemokines when exposed
to a different cytokine milieu or on interaction with immune
cells in the heart. Indeed, we showed that NK cells controlled
chemokine profiles secreted by cardiac fibroblasts during
EAM. On depletion of NK cells, cardiac fibroblastederived
chemokines generated a pro-eosinophilic environment
in vivo, in vitro, and ex vivo.

Of these chemokines, eotaxins and CXCL9, major con-
trollers of eosinophilic trafficking in asthma and allergy, were
the most dysregulated.71e74 We were able to show that
CXCL9 was directly controlled by NK-derived IFNg and that
in the absence of IFNg, CXCL9 levels were diminished.
However, most chemokines are notorious for functional
redundancy and it is difficult to obtain phenotypic evidence
The American Journal of Pathology - ajp.amjpathol.org
for their role in disease.75,76 Ccl11 and CXCL9 are no
exception to this rule. This was supported by the failure of
Ccr3�/� and IFNg�/� mice to show any changes in eosin-
ophilic accumulation in the absence of NK cells. Further-
more, although this relationship between NK cells and
resident cardiac fibroblasts was undeniably present in EAM,
it may not be the predominant manner in which NK cells
control eosinophilic infiltration.

Therefore, we explored whether NK cells could directly
inhibit eosinophils, by either deactivation or killing. Reports
in human cells indicated that the co-culture of NK cells with
naïve eosinophils resulted in eosinophil activation and
degranulation.77,78 By annexin V staining, a marker of early
apoptosis, we show that NK cells induce apoptosis of eo-
sinophils in vitro. Delayed apoptosis of eosinophils has been
implicated in multiple asthma models, and the induction of
apoptosis by pharmacological agents contributes to the
clearance of disease.79e81 Therefore, the increased eosino-
phil numbers seen in the absence of NK cells may be the
result of a deficiency in apoptotic signals during cardiac
inflammation.

These data open the possibility for NK cells or their
products as a biological therapy for myocarditis. NK-related
therapies are an area of avid cancer research, and the same
resources could be used to treat autoimmune disorders.82e84

Developments in the treatment for clinical myocarditis are
constricted by the opposing needs in the viral and autoim-
mune components of disease. Ideally, an intervention could
be designed that would target both needs simultaneously.
Our laboratory has now shown that NK cells are clearly
protective in both viral and autoimmune-mediated driven
forms of myocarditis. In essence, NK cells or NK-derived
products concurrently could serve as an antiviral therapy
and also as an immunosuppressant.
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