16 research outputs found

    Results of the RAMI analyses performed for the IFMIF accelerator facility in the engineering design phase

    Get PDF
    This paper presents a summary of the RAMI (Reliability Availability Maintainability Inspectability) analyses done for the IFMIF (International Fusion Materials Irradiation Facility) Accelerator facility in the Engineering Design Phase. The methodology followed, the analyses performed, the results obtained and the conclusions drawn are described. Moreover, the consequences of the incorporation of the RAMI studies in the IFMIF design are presented and the main outcomes of these analyses are shown. (C) 2015 Elsevier B.V. All rights reserved.Postprint (author's final draft

    Public bicycle sahring system in Prague

    No full text
    This project is oriented to the stydy of the implantation of a Public bicycle and then develop a implantation in this city. This project could be the study that the Prague's City Hall would request with the intention of know what would suppose to the city this system and how coul it be.Outgoin

    Public bicycle sahring system in Prague

    No full text
    This project is oriented to the stydy of the implantation of a Public bicycle and then develop a implantation in this city. This project could be the study that the Prague's City Hall would request with the intention of know what would suppose to the city this system and how coul it be.Outgoin

    IFMIF accelerator facility RAMI analyses in the engineering design phase

    No full text
    The planned International Fusion Materials Irradiation Facility (IFMIF) has the mission to test and qualify materials for future fusion reactors. IFMIF will employ the deuteron-lithium stripping reaction to irradiate the test samples with a high-energy neutron flux. IFMIF will consist mainly of two linear deuteron accelerators, a liquid lithium loop and a test cell. Accelerated deuterons will collide with the lithium producing a high-energy neutron flux that will irradiate the material samples in the test cell. A timely and relevant fusion neutron source is essential in the path towards DEMO and future fusion power plants. For this reason, IFMIF is required to have high availability to obtain a fusion materials database to find suitable materials for DEMO design within the anticipated timeline. RAMI (Reliability Availability Maintainability Inspectability) analyses are being performed in the very early stages of design to meet such requirements. The IFMIF accelerator facility is composed of two independent linear accelerators, each of which produces a 40 MeV, 125 mA deuteron beam in a continuous wave mode at 175 MHz. These beam characteristics pose several unprecedented challenges: the highest beam intensity, the highest space charge, the highest beam power and the longest RFQ (Radio Frequency Quadrupole). As a result of these challenges, many design characteristics are counter to high-availability performance: the design is reluctant to accept failures, machine protection systems are likely to stop the beam undesirably, cryogenic components require long periods for maintenance, and activation of components complicates maintenance activities. These design difficulties, together with the high availability requirements and the demanding scheduled operational periods, make RAMI analysis an essential tool in the engineering design phase. These studies were performed in collaboration with system designers, enabling the creation of RAMI models that reflect current accelerator design. This feedback has been of the utmost importance to propose plausible design modifications in order to improve the availability performance of the machine. Parallel activity on the design and construction of the Linear IFMIF Prototype Accelerator (LIPAc) provided the detailed design information needed to conduct these studies properly. An iterative process was followed to match IFMIF design and availability studies. These iterations made it possible to include recommendations and design change proposals coming from the RAMI analyses into the accelerator reference design. Iterations consist of gathering information from the design, creating or updating the RAMI models, obtaining and analyzing results, and proposing ways to improve the design. Three different approaches were carried out in the iterative process. First, a comparison with other similar facilities was performed. Second, an individual fault tree analysis was developed for each system of the accelerator. Finally, a Monte Carlo simulation was performed for the whole accelerator facility considering synergies between systems. These approaches make it possible to go from detailed hardware availability analyses to global accelerator performance, to identify weak design points, and to propose design alternatives as well as foresee IFMIF performance, maintenance and operation characteristics. The IFMIF accelerator facility design was analyzed from the RAMI point of view, estimating its future availability and guiding the design towards a high reliability and availability performance. In order to achieve the high-availability requirements several design changes have already been included in the accelerator reference design whereas other important design modifications have been proposed and will be further analyzed in future design phases

    The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European - Japanese project towards a Li(d,xn) fusion relevant neutron source

    No full text
    The International Fusion Materials Irradiation Facility (IFMIF), presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase under the frame of the Broader Approach Agreement between Europe and Japan, accomplished in summer 2013, on schedule, its EDA phase with the release of the engineering design report of the IFMIF plant, which is here described. Many improvements of the design from former phases are implemented, particularly a reduction of beam losses and operational costs thanks to the superconducting accelerator concept, the re-location of the quench tank outside the test cell (TC) with a reduction of tritium inventory and a simplification on its replacement in case of failure, the separation of the irradiation modules from the shielding block gaining irradiation flexibility and enhancement of the remote handling equipment reliability and cost reduction, and the water cooling of the liner and biological shielding of the TC, enhancing the efficiency and economy of the related sub-systems. In addition, the maintenance strategy has been modified to allow a shorter yearly stop of the irradiation operations and a more careful management of the irradiated samples. The design of the IFMIF plant is intimately linked with the EVA phase carried out since the entry into force of IFMIF/EVEDA in June 2007. These last activities and their on-going accomplishment have been thoroughly described elsewhere (Knaster J et al [19]), which, combined with the present paper, allows a clear understanding of the maturity of the European–Japanese international efforts. This released IFMIF Intermediate Engineering Design Report (IIEDR), which could be complemented if required concurrently with the outcome of the on-going EVA, will allow decision making on its construction and/or serve as the basis for the definition of the next step, aligned with the evolving needs of our fusion community.Peer ReviewedPostprint (published version

    The accomplishment of the Engineering Design Activities of IFMIF/EVEDA: The European - Japanese project towards a Li(d,xn) fusion relevant neutron source

    No full text
    The International Fusion Materials Irradiation Facility (IFMIF), presently in its Engineering Validation and Engineering Design Activities (EVEDA) phase under the frame of the Broader Approach Agreement between Europe and Japan, accomplished in summer 2013, on schedule, its EDA phase with the release of the engineering design report of the IFMIF plant, which is here described. Many improvements of the design from former phases are implemented, particularly a reduction of beam losses and operational costs thanks to the superconducting accelerator concept, the re-location of the quench tank outside the test cell (TC) with a reduction of tritium inventory and a simplification on its replacement in case of failure, the separation of the irradiation modules from the shielding block gaining irradiation flexibility and enhancement of the remote handling equipment reliability and cost reduction, and the water cooling of the liner and biological shielding of the TC, enhancing the efficiency and economy of the related sub-systems. In addition, the maintenance strategy has been modified to allow a shorter yearly stop of the irradiation operations and a more careful management of the irradiated samples. The design of the IFMIF plant is intimately linked with the EVA phase carried out since the entry into force of IFMIF/EVEDA in June 2007. These last activities and their on-going accomplishment have been thoroughly described elsewhere (Knaster J et al [19]), which, combined with the present paper, allows a clear understanding of the maturity of the European–Japanese international efforts. This released IFMIF Intermediate Engineering Design Report (IIEDR), which could be complemented if required concurrently with the outcome of the on-going EVA, will allow decision making on its construction and/or serve as the basis for the definition of the next step, aligned with the evolving needs of our fusion community.Peer Reviewe

    Dynamic and static crushing of closed-hat section members

    No full text
    In 2 vols.Available from British Library Document Supply Centre-DSC:DX194549 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    RAM methodology and activities for IFMIF engineering design

    No full text
    IFMIF (International Fusion Materials Irradiation Facility) will be an accelerator-based neutron source to test fusion candidate materials. The Engineering Validation and Engineering Design Activities (EVEDA) of IFMIF are aimed to deliver the complete engineering design file of this major facility. Achieving a high level of availability and reliability is a key point for IFMIF mission. A goal of 70% of operational availability has been established. In order to fulfil the availability requirements, RAM (Reliability, Availability and Maintainability) has to be considered during the engineering design phase. This paper summarizes the methodology developed and the proposed process aimed at including RAM in the design of IFMIF, as well as the activities performed in this framework. Overall RAM specifications have been defined for IFMIF project. RAM methodology dealing with RAM design guidelines, reliability database and RAM modelization has been developed. As a first step for the iterative process of RAM analysis of IFMIF design, a fault tree model based on a new reliability database has been performed with Risk Spectrum®. The result is a first assessment of the availability and first allocation of RAM requirements

    RAM methodology and activities for IFMIF engineering design

    No full text
    IFMIF (International Fusion Materials Irradiation Facility) will be an accelerator-based neutron source to test fusion candidate materials. The Engineering Validation and Engineering Design Activities (EVEDA) of IFMIF are aimed to deliver the complete engineering design file of this major facility. Achieving a high level of availability and reliability is a key point for IFMIF mission. A goal of 70% of operational availability has been established. In order to fulfil the availability requirements, RAM (Reliability, Availability and Maintainability) has to be considered during the engineering design phase. This paper summarizes the methodology developed and the proposed process aimed at including RAM in the design of IFMIF, as well as the activities performed in this framework. Overall RAM specifications have been defined for IFMIF project. RAM methodology dealing with RAM design guidelines, reliability database and RAM modelization has been developed. As a first step for the iterative process of RAM analysis of IFMIF design, a fault tree model based on a new reliability database has been performed with Risk Spectrum®. The result is a first assessment of the availability and first allocation of RAM requirements.Postprint (published version

    RAMI strategies in the IFMIF Test Facilities design

    No full text
    In this paper, a RAMI analysis of the different stages in Test Facilities (TF) design is described. The comparison between the availability results has been a milestone not only to evaluate the major unavailability contributors in the updates but also to implement fault tolerant design strategies when possible. These strategies encompass a wide range of design activities: from the definition of degraded modes of operation in the Test Facilities to specific modifications in the test modules in order to guarantee their fail safe operation
    corecore