62 research outputs found

    RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions

    Get PDF
    Prokaryotes have evolved multiple versions of an RNA-guided adaptive immune system that targets foreign nucleic acids. In each case, transcripts derived from clustered regularly interspaced short palindromic repeats (CRISPRs) are thought to selectively target invading phage and plasmids in a sequence-specific process involving a variable cassette of CRISPR-associated (cas) genes. The CRISPR locus in Pseudomonas aeruginosa (PA14) includes four cas genes that are unique to and conserved in microorganisms harboring the Csy-type (CRISPR system yersinia) immune system. Here we show that the Csy proteins (Csy1-4) assemble into a 350 kDa ribonucleoprotein complex that facilitates target recognition by enhancing sequence-specific hybridization between the CRISPR RNA and complementary target sequences. Target recognition is enthalpically driven and localized to a "seed sequence" at the 5' end of the CRISPR RNA spacer. Structural analysis of the complex by small-angle X-ray scattering and single particle electron microscopy reveals a crescent-shaped particle that bears striking resemblance to the architecture of a large CRISPR-associated complex from Escherichia coli, termed Cascade. Although similarity between these two complexes is not evident at the sequence level, their unequal subunit stoichiometry and quaternary architecture reveal conserved structural features that may be common among diverse CRISPR-mediated defense systems

    THE USE OF SANDWICH-CULTURED RAT HEPATOCYTES TO DETERMINE THE INTRINSIC CLEARANCE OF COMPOUNDS WITH DIFFERENT EXTRACTION RATIOS: 7-ETHOXYCOUMARIN AND WARFARIN

    Get PDF
    ABSTRACT: The application of sandwich-cultured rat hepatocytes for the identification of the hepatic intrinsic clearance of compounds with widely varying extraction ratios was investigated. We previously showed the applicability of this in vitro system, in combination with a model describing molecular diffusion, hepatocyte/medium partition, and nonsaturated metabolism, which resulted in a successful identification of this parameter for tolbutamide. This approach is further validated using the compounds 7-ethoxycoumarin and warfarin, covering a 100-fold range of extraction ratios. Clearance of these two substrates could be reliably determined, but only if the depletion of the parent compound in medium as well as in the hepatocyte sandwich was measured. Sensitivity analyses showed that the time course of depletion of the parent compound in medium, especially for warfarin, is insensitive to the partition and diffusion parameter values, whereas depletion in the hepatocyte sandwich was far more sensitive. When varying the volumes of collagen in the sandwich culture, it appears that the most reliable kinetic parameters could be obtained by fitting the data with the smaller collagen volume and that these parameters obtained from fitting to data of the larger volumes generally cannot be verified satisfactorily with the data of the smaller volumes. The values of hepatic clearance that were obtained after extrapolation of the intrinsic clearance to the hepatic clearance from blood were comparable within a factor of 2 to hepatic clearance data in the literature. This indicates that this sandwich culture and modeling system can be applied for the identification of the hepatic intrinsic clearance rate of the total range from low to high clearance compounds. Predicting the kinetic parameters of compounds in vivo using data from in vitro experiments is a fast developing area of research Recently, we have successfully developed the alternative approach of using sandwich-cultured rat hepatocytes in determining the in vitro intrinsic clearance of the slowly metabolized compound tolbutamide In this alternative approach, the use of data on substrate depletion was chosen rather than the use of data on metabolite formation. Using data on metabolite formation may cause practical problems when analytical methods or standards to study the kinetics of metabolite Article, publication date, and citation information can be found at http://dmd.aspetjournals.org. doi:10.1124/dmd.105.004390. ABBREVIATIONS: CL bile , biliary clearance (ml/min/kg body weight); CL hep , hepatic clearance (ml/min/kg body weight); CL int , intrinsic clearance (ml/min); C m , concentration medium (M); C s , concentration sandwich (M); D m , diffusion coefficient in medium (cm 2 /min); D s , diffusion coefficient in sandwich (cm 2 /min); f a , fraction of cell activity; f m , free fraction medium; f h , free fraction hepatocytes; f n , fraction of cells; f s , free fraction sandwich; f u , free fraction in blood; f v , fraction of viable cells; K h , specific clearance (Ϫ/min); K l , specific intrinsic clearance of the liver (Ϫ/min; Ϫ/h); K m , Michaelis-Menten constant (M); K ow , partition coefficient octanol-water; K s , first-order metabolism (Ϫ/min); L m , medium layer thickness (cm); L s , sandwich layer thickness (cm); PBPK, physiologically based pharmacokinetics; P cm , collagen-medium partition coefficient; P hm , hepatoyctemedium partition coefficient; P sm , sandwich-medium partition coefficient; P, parameter value; Q h , hepatic blood flow (l/h); s, sensitivity; SRW, standard rat body weight (250 g); V c , volume of collagen (ml); V h , volume of hepatocytes (ml); V m , volume of medium (ml); V max , maximum rate of metabolism (M/min); V s , volume sandwich (ml); DMEM, Dulbecco's modified Eagle's medium; FCS, fetal calf serum; HPLC, high-performance liquid chromatography

    Native mass spectrometry provides direct evidence for DNA mismatch-induced regulation of asymmetric nucleotide binding in mismatch repair protein MutS

    Get PDF
    The DNA mismatch repair protein MutS recognizes mispaired bases in DNA and initiates repair in an ATP-dependent manner. Understanding of the allosteric coupling between DNA mismatch recognition and two asymmetric nucleotide binding sites at opposing sides of the MutS dimer requires identification of the relevant MutS.mmDNA.nucleotide species. Here, we use native mass spectrometry to detect simultaneous DNA mismatch binding and asymmetric nucleotide binding to Escherichia coli MutS. To resolve the small differences between macromolecular species bound to different nucleotides, we developed a likelihood based algorithm capable to deconvolute the observed spectra into individual peaks. The obtained mass resolution resolves simultaneous binding of ADP and AMP.PNP to this ABC ATPase in the absence of DNA. Mismatched DNA regulates the asymmetry in the ATPase sites; we observe a stable DNA-bound state containing a single AMP.PNP cofactor. This is the first direct evidence for such a postulated mismatch repair intermediate, and showcases the potential of native MS analysis in detecting mechanistically relevant reaction intermediates

    Structural basis for CRISPR RNA-guided DNA recognition by Cascade

    Get PDF
    The CRISPR (clustered regularly interspaced short palindromic repeats) immune system in prokaryotes uses small guide RNAs to neutralize invading viruses and plasmids. In Escherichia coli, immunity depends on a ribonucleoprotein complex called Cascade. Here we present the composition and low-resolution structure of Cascade and show how it recognizes double-stranded DNA (dsDNA) targets in a sequence-specific manner. Cascade is a 405-kDa complex comprising five functionally essential CRISPR-associated (Cas) proteins (CasA1B2C6D1E1) and a 61-nucleotide CRISPR RNA (crRNA) with 5′-hydroxyl and 2′,3′-cyclic phosphate termini. The crRNA guides Cascade to dsDNA target sequences by forming base pairs with the complementary DNA strand while displacing the noncomplementary strand to form an R-loop. Cascade recognizes target DNA without consuming ATP, which suggests that continuous invader DNA surveillance takes place without energy investment. The structure of Cascade shows an unusual seahorse shape that undergoes conformational changes when it binds target DNA.

    Controlled Release of Octreotide and Assessment of Peptide Acylation from Poly(D,L-lactide-co-hydroxymethyl glycolide) Compared to PLGA Microspheres

    Get PDF
    # The Author(s) 2011. This article is published with open access at Springerlink.com Purpose To investigate the in vitro release of octreotide acetate, a somatostatin agonist, from microspheres based on a hydrophilic polyester, poly(D,L-lactide-co-hydroxymethyl glycolide) (PLHMGA). Methods Spherical and non-porous octreotide-loaded PLHMGA microspheres (12 to 16 μm) and loading efficiency of 60–70% were prepared by a solvent evaporation. Octreotide release profiles were compared with commercial PLGA formulation (Sandostatin LAR ®); possible peptide modification with lactic, glycolic and hydroxymethyl glycolic acid units was monitored. Results PLHMGA microspheres showed burst release (~20%) followed by sustained release for 20–60 days, depending on the hydrophilicity of the polymer. Percentage of released loaded peptide was high (70–90%);>60 % of released peptide was native octreotide. PLGA microspheres did not show peptide release for the first 10 days, after which it was released in a sustained manner over the next 90 days;>75 % of released peptides were acylated adducts. Conclusions PLHMGA microspheres are promising controlled systems for peptides with excellent control over release kinetics. Moreover, substantially less peptide modification occurred in PLHMGA than in PLGA microspheres. KEY WORDS acylation. aliphatic polyester. controlle

    Identification of common and distinct origins of human serum and breastmilk IgA1 by mass spectrometry-based clonal profiling

    Get PDF
    The most abundant immunoglobulin present in the human body is IgA. It has the highest concentrations at the mucosal lining and in biofluids such as milk and is the second most abundant class of antibodies in serum. We assessed the structural diversity and clonal repertoire of IgA1-containing molecular assemblies longitudinally in human serum and milk from three donors using a mass spectrometry-based approach. IgA-containing molecules purified from serum or milk were assessed by the release and subsequent analysis of their Fab fragments. Our data revealed that serum IgA1 consists of two distinct structural populations, namely monomeric IgA1 (∼80%) and dimeric joining (J-) chain coupled IgA1 (∼20%). Also, we confirmed that IgA1 in milk is present solely as secretory (S)IgA, consisting of two (∼50%), three (∼33%) or four (∼17%) IgA1 molecules assembled with a J-chain and secretory component (SC). Interestingly, the serum and milk IgA1-Fab repertoires were distinct between monomeric, and J-chain coupled dimeric IgA1. The serum dimeric J-chain coupled IgA1 repertoire contained several abundant clones also observed in the milk IgA1 repertoire. The latter repertoire had little to no overlap with the serum monomeric IgA1 repertoire. This suggests that human IgA1s have (at least) two distinct origins; one of these produces dimeric J-chain coupled IgA1 molecules, shared in human serum and milk, and another produces monomeric IgA1 ending up exclusively in serum

    A Common Origin for the Bacterial Toxin-Antitoxin Systems parD and ccd, Suggested by Analyses of Toxin/Target and Toxin/Antitoxin Interactions

    Get PDF
    Bacterial toxin-antitoxin (TA) systems encode two proteins, a potent inhibitor of cell proliferation (toxin) and its specific antidote (antitoxin). Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets. © 2012 Smith et al.Spanish MICINN (Granted projects BFU 2008-01566/BMC y and CSD2008-00013). EDN acknowledges support from the PRIME-XS project, grant agreement number 262067, funded by the European Union 7th Framework Programme and from the Basque Country Government.Peer Reviewe

    Galactonolactone dehydrogenase requires a redox-sensitive thiol for optimal production of vitamin C<sup>1</sup>

    No full text
    The mitochondrial flavoenzyme l-galactono-γ-lactone dehydrogenase (GALDH) catalyzes the ultimate step of vitamin C biosynthesis in plants. We found that recombinant GALDH from Arabidopsis (Arabidopsis thaliana) is inactivated by hydrogen peroxide due to selective oxidation of cysteine (Cys)-340, located in the cap domain. Electrospray ionization mass spectrometry revealed that the partial reversible oxidative modification of Cys-340 involves the sequential formation of sulfenic, sulfinic, and sulfonic acid states. S-Glutathionylation of the sulfenic acid switches off GALDH activity and protects the enzyme against oxidative damage in vitro. C340A and C340S GALDH variants are insensitive toward thiol oxidation, but exhibit a poor affinity for l-galactono-1,4-lactone. Cys-340 is buried beneath the protein surface and its estimated pK(a) of 6.5 suggests the involvement of the thiolate anion in substrate recognition. The indispensability of a redox-sensitive thiol provides a rationale why GALDH was designed as a dehydrogenase and not, like related aldonolactone oxidoreductases, as an oxidase

    Analyzing Protein Micro-Heterogeneity in Chicken Ovalbumin by High-Resolution Native Mass Spectrometry Exposes Qualitatively and Semi-Quantitatively 59 Proteoforms

    No full text
    Taking chicken Ovalbumin as a prototypical example of a eukaryotic protein we use high-resolution native electrospray ionization mass spectrometry on a modified Exactive Orbitrap mass analyzer to qualitatively and semiquantitatively dissect 59 proteoforms in the natural protein. This variety is largely induced by the presence of multiple phosphorylation sites and a glycosylation site that we find to be occupied by at least 45 different glycan structures. Mass analysis of the intact protein in its native state is straightforward and fast, requires very little sample preparation, and provides a direct view on the stoichiometry of all different coappearing modifications that are distinguishable in mass. As such, this proof-of-principal analysis shows that native electrospray ionization mass spectrometry in combination with an Orbitrap mass analyzer offers a means to characterize proteins in a manner highly complementary to standard bottom-up shot-gun proteome analysis
    corecore