448 research outputs found

    Building Capacity in Nonprofit Organizations

    Get PDF
    Offers a capacity building model that is based on a review of civil society, sustainable development, and organizational management literature. Reviews effective capacity building programs sponsored or operated by foundations. Includes recommendations

    miRvestigator: web application to identify miRNAs responsible for co-regulated gene expression patterns discovered through transcriptome profiling

    Get PDF
    Transcriptome profiling studies have produced staggering numbers of gene co-expression signatures for a variety of biological systems. A significant fraction of these signatures will be partially or fully explained by miRNA-mediated targeted transcript degradation. miRvestigator takes as input lists of co-expressed genes from Caenorhabditis elegans, Drosophila melanogaster, G. gallus, Homo sapiens, Mus musculus or Rattus norvegicus and identifies the specific miRNAs that are likely to bind to 3â€Č un-translated region (UTR) sequences to mediate the observed co-regulation. The novelty of our approach is the miRvestigator hidden Markov model (HMM) algorithm which systematically computes a similarity P-value for each unique miRNA seed sequence from the miRNA database miRBase to an overrepresented sequence motif identified within the 3â€Č-UTR of the query genes. We have made this miRNA discovery tool accessible to the community by integrating our HMM algorithm with a proven algorithm for de novo discovery of miRNA seed sequences and wrapping these algorithms into a user-friendly interface. Additionally, the miRvestigator web server also produces a list of putative miRNA binding sites within 3â€Č-UTRs of the query transcripts to facilitate the design of validation experiments. The miRvestigator is freely available at http://mirvestigator.systemsbiology.net

    Role of the Oxide Support on the Structural and Chemical Evolution of Fe Catalysts during the Hydrogenation of CO<sub>2</sub>

    Get PDF
    Iron-based catalysts are considered active for the hydrogenation of CO2 toward high-order hydrocarbons. Here, we address the structural and chemical evolution of oxide-supported iron nanoparticles (NPs) during the activation stages and during the CO2 hydrogenation reaction. Fe NPs were deposited onto planar SiO2 and Al2O3 substrates by dip coating with a colloidal NP precursor and by physical vapor deposition of Fe. These model catalysts were studied in situ by near-ambient pressure X-ray photoelectron spectroscopy (NAP-XPS) in pure O2, then in H2, and finally in the CO2 + H2 (1:3) reaction mixture in the mbar pressure range and at elevated temperatures. The NAP-XPS results revealed the preferential formation of Fe(III)- and Fe(II)-containing surface oxides under reaction conditions, independently of the initial degree of iron reduction prior to the reaction, suggesting that CO2 behaves as an oxidizing agent even in excess of hydrogen. The formation of the iron carbide phase, often reported for unsupported Fe catalysts in this reaction, was never observed in our systems, even on the samples exposed to industrially relevant pressure and temperature (e.g., 10 bar of CO2 + H2, 300 °C). Moreover, the same behavior is observed for Fe NPs deposited on nanocrystalline silica and alumina powder supports, which were monitored in situ by X-ray absorption spectroscopy (XAS). Our findings are assigned to the nanometer size of the Fe particles, which undergo strong interaction with the oxide support. The combined XPS and XAS results suggest that a core (metal-rich)–shell (oxide-rich) structure is formed within the Fe NPs during the CO2 hydrogenation reaction. The results highlight the important role played by the oxide support in the final structure and composition of nanosized catalysts

    Dynamics of fermions coupling to a U(1) gauge field in the limit e2→∞e^2\to\infty

    Full text link
    We study in this paper the properties of a gas of fermions coupling to a U(1) gauge field at wavevectors q<Λ<<kFq<\Lambda<<k_F at dimensions larger than one, where Λ<<kF\Lambda<<k_F is a high momentum cutoff and kFk_F is the fermi wave vector. In particular, we shall consider the e2→∞e^2\to\infty limit where charge and current fluctuations at wave vectors q<Λq<\Lambda are forbidden. Within a bosonization approximation, effective actions describing the low energy physics of the system are constructed, where we show that the system can be described as a fermion liquid formed by chargeless quasi-particles which has vanishing wavefunction overlap with the bare fermions in the system.Comment: 25 page

    Influence of consciousness, muscle action and activity on medial condyle translation after Oxford unicompartmental knee replacement

    Get PDF
    Background: Quantification of the in vivo position of the medial condyle throughout flexion is important for knee replacement design, and understanding knee pathology. The influence of consciousness, muscle action, and activity type on condyle translation was examined in patients who had undergone medial unicompartmental knee replacement (UKR) using lateral video fluoroscopy. Methods: The position of the centre of the femoral component relative to the tibial component was measured for 9 patients under different conditions. The following activities were assessed; passive flexion and extension when anaesthetised, passive flexion and extension when conscious, active flexion, extension and step-up. Results: The position of the centre of the femoral component relative to the tibial component was highly patient dependent. The greatest average translation range (14.9 mm) was observed in anaesthetised patients, and the condyle was significantly more anterior near to extension. Furthermore, when conscious but being moved passively, the femoral condyle translated a greater range (8.9 mm) than when moving actively (5.2 mm). When ascending stairs, the femoral condyle was more posterior at 20-30 degrees of flexion than during flexion/extension. Conclusions: The similarity between these results and published data suggest that knee kinematics following mobile-bearing UKR is relatively normal. The results show that in the normal knee and after UKR, knee kinematics is variable and is influenced by the patient, consciousness, muscle action, and activity type. Clinical relevance: It is therefore essential that all these factors are considered during knee replacement design, if the aim is to achieve more normal knee kinematics

    Sub-surface Oxygen and Surface Oxide Formation at Ag(111): A Density-functional Theory Investigation

    Full text link
    To help provide insight into the remarkable catalytic behavior of the oxygen/silver system for heterogeneous oxidation reactions, purely sub-surface oxygen, and structures involving both on-surface and sub-surface oxygen, as well as oxide-like structures at the Ag(111) surface have been studied for a wide range of coverages and adsorption sites using density-functional theory. Adsorption on the surface in fcc sites is energetically favorable for low coverages, while for higher coverage a thin surface-oxide structure is energetically favorable. This structure has been proposed to correspond to the experimentally observed (4x4) phase. With increasing O concentrations, thicker oxide-like structures resembling compressed Ag2O(111) surfaces are energetically favored. Due to the relatively low thermal stability of these structures, and the very low sticking probability of O2 at Ag(111), their formation and observation may require the use of atomic oxygen (or ozone, O3) and low temperatures. We also investigate diffusion of O into the sub-surface region at low coverage (0.11 ML), and the effect of surface Ag vacancies in the adsorption of atomic oxygen and ozone-like species. The present studies, together with our earlier investigations of on-surface and surface-substitutional adsorption, provide a comprehensive picture of the behavior and chemical nature of the interaction of oxygen and Ag(111), as well as of the initial stages of oxide formation.Comment: 17 pages including 14 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Defining freshwater as a natural resource: a framework linking water use to the area of protection natural resources

    Full text link
    © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Purpose: While many examples have shown unsustainable use of freshwater resources, existing LCIA methods for water use do not comprehensively address impacts to natural resources for future generations. This framework aims to (1) define freshwater resource as an item to protect within the Area of Protection (AoP) natural resources, (2) identify relevant impact pathways affecting freshwater resources, and (3) outline methodological choices for impact characterization model development. Methods: Considering the current scope of the AoP natural resources, the complex nature of freshwater resources and its important dimensions to safeguard safe future supply, a definition of freshwater resource is proposed, including water quality aspects. In order to clearly define what is to be protected, the freshwater resource is put in perspective through the lens of the three main safeguard subjects defined by Dewulf et al. (2015). In addition, an extensive literature review identifies a wide range of possible impact pathways to freshwater resources, establishing the link between different inventory elementary flows (water consumption, emissions, and land use) and their potential to cause long-term freshwater depletion or degradation. Results and discussion: Freshwater as a resource has a particular status in LCA resource assessment. First, it exists in the form of three types of resources: flow, fund, or stock. Then, in addition to being a resource for human economic activities (e.g., hydropower), it is above all a non-substitutable support for life that can be affected by both consumption (source function) and pollution (sink function). Therefore, both types of elementary flows (water consumption and emissions) should be linked to a damage indicator for freshwater as a resource. Land use is also identified as a potential stressor to freshwater resources by altering runoff, infiltration, and erosion processes as well as evapotranspiration. It is suggested to use the concept of recovery period to operationalize this framework: when the recovery period lasts longer than a given period of time, impacts are considered to be irreversible and fall into the concern of freshwater resources protection (i.e., affecting future generations), while short-term impacts effect the AoP ecosystem quality and human health directly. It is shown that it is relevant to include this concept in the impact assessment stage in order to discriminate the long-term from the short-term impacts, as some dynamic fate models already do. Conclusions: This framework provides a solid basis for the consistent development of future LCIA methods for freshwater resources, thereby capturing the potential long-term impacts that could warn decision makers about potential safe water supply issues in the future

    Astrometry and geodesy with radio interferometry: experiments, models, results

    Full text link
    Summarizes current status of radio interferometry at radio frequencies between Earth-based receivers, for astrometric and geodetic applications. Emphasizes theoretical models of VLBI observables that are required to extract results at the present accuracy levels of 1 cm and 1 nanoradian. Highlights the achievements of VLBI during the past two decades in reference frames, Earth orientation, atmospheric effects on microwave propagation, and relativity.Comment: 83 pages, 19 Postscript figures. To be published in Rev. Mod. Phys., Vol. 70, Oct. 199

    Insights into the function of silver as an oxidation catalyst by ab initio, atomistic thermodynamics

    Get PDF
    To help understand the high activity of silver as an oxidation catalyst, e.g., for the oxidation of ethylene to epoxide and the dehydrogenation of methanol to formaldehyde, the interaction and stability of oxygen species at the Ag(111) surface has been studied for a wide range of coverages. Through calculation of the free energy, as obtained from density-functional theory and taking into account the temperature and pressure via the oxygen chemical potential, we obtain the phase diagram of O/Ag(111). Our results reveal that a thin surface-oxide structure is most stable for the temperature and pressure range of ethylene epoxidation and we propose it (and possibly other similar structures) contains the species actuating the catalysis. For higher temperatures, low coverages of chemisorbed oxygen are most stable, which could also play a role in oxidation reactions. For temperatures greater than about 775 K there are no stable oxygen species, except for the possibility of O atoms adsorbed at under-coordinated surface sites Our calculations rule out thicker oxide-like structures, as well as bulk dissolved oxygen and molecular ozone-like species, as playing a role in the oxidation reactions.Comment: 15 pages including 9 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm
    • 

    corecore