384 research outputs found

    Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how

    Get PDF
    The soil holds twice as much carbon as does the atmosphere, and most soil carbon is derived from recent photosynthesis that takes carbon into root structures and further into below-ground storage via exudates therefrom. Nonetheless, many natural and most agricultural crops have roots that extend only to about 1 m below ground. What determines the lifetime of below-ground C in various forms is not well understood, and understanding these processes is therefore key to optimising them for enhanced C sequestration. Most soils (and especially subsoils) are very far from being saturated with organic carbon, and calculations show that the amounts of C that might further be sequestered (http://dbkgroup.org/carbonsequestration/rootsystem.html) are actually very great. Breeding crops with desirable below-ground C sequestration traits, and exploiting attendant agronomic practices optimised for individual species in their relevant environments, are therefore important goals. These bring additional benefits related to improvements in soil structure and in the usage of other nutrients and water

    Different effects of alpine woody plant expansion on domestic and wild ungulates

    Get PDF
    Changes in land-use and climate affect the distribution and diversity of plant and animal species at different spatiotemporal scales. The extent to which species-specific phenotypic plasticity and biotic interactions mediate organismal adaptation to changing environments, however, remains poorly understood. Woody plant expansion is threatening the extent of alpine grasslands worldwide, and evaluating and predicting its effects on herbivores is of crucial importance. Here, we explore the impact of shrubification on the feeding efficiency of Pyrenean chamois (Rupicapra p. pyrenaica), as well as on the three most abundant coexisting domestic ungulate species: cattle, sheep and horses. We use observational diet composition from May to October and model different scenarios of vegetation availability where shrubland and woodland proliferate at the expense of grassland. We then predicted if the four ungulate species could efficiently utilize their food landscapes with their current dietary specificities measuring their niche breath in each scenario. We observed that the wild counterpart, due to a higher trophic plasticity, is less disturbed by shrubification compared to livestock, which rely primarily on herbaceous plants and will be affected 3.6 times more. Our results suggest that mixed feeders, such as chamois, could benefit from fallow landscapes, and that mountain farmers are at a growing economic risk worldwide due to changing land-use practices and climate conditions

    A social and ecological assessment of tropical land uses at multiple scales: the Sustainable amazon network

    Get PDF
    Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network (Rede Amazônia Sustentável, RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far

    Soil Microbial Community Changes in Wooded Mountain Pastures due to Simulated Effects of Cattle Grazing

    Get PDF
    The effect of cattle activity on pastures can be subdivided into three categories of disturbances: herbage removal, dunging and trampling. The objective of this study was to assess separately or in combination the effect of these factors on the potential activities of soil microbial communities and to compare these effects with those of soil properties and plant composition or biomass. Controlled treatments simulating the three factors were applied in a fenced area including a light gradient (sunny and shady situation): (i) repeated mowing; (ii) trampling; (iii) fertilizing with a liquid mixture of dung and urine. In the third year of the experiment, community level physiological profiles (CLPP) (Biolog Ecoplates¿) were measured for each plots. Furthermore soil chemical properties (pH, total organic carbon, total nitrogen and total phosphorus), plant species composition and plant biomass were also assessed. Despite differences in plant communities and soil properties, the metabolic potential of the microbial community in the sunny and in the shady situations were similar. Effects of treatments on microbial communities were more pronounced in the sunny than in the shady situation. In both cases, repeated mowing was the first factor retained for explaining functional variations. In contrast, fertilizing was not a significant factor. The vegetation explained a high proportion of variation of the microbial community descriptors in the sunny situation, while no significant variation appeared under shady condition. The three components of cattle activities influenced differently the soil microbial communities and this depended on the light conditions within the wooded pasture. Cattle activities may also change spatially at a fine scale and short-term and induce changes in the microbial community structure. Thus, the shifting mosaic that has been described for the vegetation of pastures may also apply for below-ground microbial communities

    Microbial Functional Capacity Is Preserved Within Engineered Soil Formulations Used In Mine Site Restoration

    Get PDF
    Mining of mineral resources produces substantial volumes of crushed rock based wastes that are characterised by poor physical structure and hydrology, unstable geochemistry and potentially toxic chemical conditions. Recycling of these substrates is desirable and can be achieved by blending waste with native soil to form a 'novel substrate' which may be used in future landscape restoration. However, these post-mining substrate based 'soils' are likely to contain significant abiotic constraints for both plant and microbial growth. Effective use of these novel substrates for ecosystem restoration will depend on the efficacy of stored topsoil as a potential microbial inoculum as well as the subsequent generation of key microbial soil functions originally apparent in local pristine sites. Here, using both marker gene and shotgun metagenome sequencing, we show that topsoil storage and the blending of soil and waste substrates to form planting substrates gives rise to variable bacterial and archaeal phylogenetic composition but a high degree of metabolic conservation at the community metagenome level. Our data indicates that whilst low phylogenetic conservation is apparent across substrate blends we observe high functional redundancy in relation to key soil microbial pathways, allowing the potential for functional recovery of key belowground pathways under targeted management
    corecore